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A Problem

Problem: Given a set of time series associated with
objects, determine which components are driving other
components.

Neurons could be replaced with other objects.
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Causality

It’s tempting to say

“Neuron #1 has a causal effect on Neuron #2”

This is fundamentally problematic.
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Granger Causality

“Granger causality” is not a new idea

“Investigating Causal Relations by Econometric Models
...”, C. Granger, Econometrica, 1969.

“Analying Multiple Nonlinear Time Series with Extended
Granger Causality”, Chen, Rangarajan, Feng and Ding,
Physics Letters A, 2004.
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Granger Causality: Defn

Definitions:

P (Yt|A) = unbiased min. var. predictor of Yt given
info in A at times ≤ t

ε(Yt|A) = Yt − P (Yt|A)

σ2(Yt|A) = Var(ε(Yt|A))

U = all information available in the universe

We say {Xt} “Granger causes” {Yt} if

σ2(Yt|U) < σ2(Yt|U \ X).
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In practice, we can’t take into account all the information in
U .

So replace U by {all measured processes}.

An Index: We can define a Granger Causality Index by

GCI(X,Y ) = 1 −
σ2(Yt|U)

σ2(Yt|U \ X)
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Granger Causality in Practice

Procedure:
1. Fit full multivariate time series model to all processes.

2. Fit sub-models, leaving out one process at a time.

3. Carry out model diagnostic tests.

4. Compute indices.
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Example

2-Neuron Example: Suppose 2 neurons have firing
rates Mt and Nt, satisfying the VAR(1) (“vector
autoregression of 1st order”) equation
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∼ N(0, I2×2).

Note: This model doesn’t allow for instantaneous
Granger causal relationships.
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Marginal Models

The VAR(1) has marginal models

Mt = 0.6Mt−1 + Vt, {Vt} ∼ N(0, 1.3)

Nt = 0.5Nt−1 + Wt, {Wt} ∼ N(0, 1)

(These could be calculated theoretically, or simply fit to ob-
served data.)
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GCI(M,N )

P (Nt|U) = 0.5Nt−1

ε(Nt|U) = Z
(2)
t

σ2(Nt|U) = Var(Z(2)
t ) = 1

P (Nt|U \ M) = 0.5Nt−1

ε(Nt|U \ M) = Wt

σ2(Nt|U \ M) = Var(Wt) = 1

So

GCI(M,N) = 1 −
1

1
= 0.
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GCI(N,M )

P (Mt|U) = 0.5Mt−1 + 0.5Nt−1

ε(Mt|U) = Z
(1)
t

σ2(Mt|U) = Var(Z(1)
t ) = 1

P (Mt|U \ N) = 0.6Mt−1

ε(Mt|U \ N) = Vt

σ2(Mt|U \ N) = Var(Vt) = 1.3

So

GCI(N,M) = 1 −
1

1.3
' 0.23.
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Fitting a VAR Model

Goal: Given K time series {N
(j)
t }, j = 1, 2, . . . ,K, find a

model of the form

Nt = Φ1Nt−1 + Φ2Nt−2 + . . . + ΦpNt−p + εt,

where Nt = (N
(1)
t , . . . , N

(K)
t )T and Φj is a K × K matrix, and

εt ∼ N(0,Σ).
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Some VAR Fitting Methods

1. Compute sample cross-correlations and match with
theoretical cross-correlations for model.

2. Compute cross-spectra and apply a spectral analog of
the above procedure.

3. Cast the model as a state-space model and use the
Kalman filter to compute likelihood as a function of
parameters. Maximize over parameters.
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A Useful Modification

Bivariate VAR(1):

N
(1)
t = φ11N

(1)
t−1 + φ12N

(2)
t−1 + ε

(1)
t

N
(2)
t = φ21N

(1)
t−1 + φ22N

(2)
t−1 + ε

(2)
t .
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A Useful Modification

Bivariate VAR(1): Simultaneous Dep.

N
(1)
t = α12N

(2)
t + φ11N

(1)
t−1 + φ12N

(2)
t−1 + ε

(1)
t

N
(2)
t = α21N

(1)
t + φ21N

(1)
t−1 + φ22N

(2)
t−1 + ε

(2)
t .

Crude method for fitting:

Use previously-mentioned methods, shifting time series by
one time unit.
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Simulation Study

Neuron #1: Rate = 20Hz

Neuron #2: Rate = 20Hz + 300λ12

Neuron #3: Rate = 20Hz + 300λ13 + 150λ23

Simulation Time Unit = 0.0001 seconds.
Total Time Simulated = 10 seconds.

Data is binned into 5ms bins.
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Simulated Spike Trains
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Binned Data
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Results - Allowing Simultaneous Dependence
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Results - No Simultaneous Dependence
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Comments on Time Series Analysis

The VAR model is linear.

Standard estimation procedures for VAR either implicitly
or explicitly assume εt is Gaussian.

These assumptions are often unrealistic.
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Something Better?

For modeling binned spike counts, perhaps

{X
(1)
t , X

(2)
t , X

(3)
t } ∼ VAR

N
(j)
t ∼ Poisson(exp(X

(j)
t ))

would be more realistic. ({Xt} is a hidden process.)

This is an example of a generalized state-space
model .

Techniques are being developed for handling these kinds of
models.
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Additional Comments

It’s safer to use the term “Granger causality” than
“causality”.

Results depend on your definition of the “universe”. For
optimal results, you should measure as much as
possible.

Results may also depend on sampling period.

Model-fitting is critical. Hence diagnostics are
important.
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