

PART 0

General motivation for visual linguistics

	Laboratory	Natural production
Cognition		

	Laboratory	Natural production
Cognition	Cognitive psychology	
		1

	Laboratory	Natural production
Cognition	Cognitive psychology	Linguistics

	Laboratory	Natural production
Cognition	Cognitive psychology	Linguistics
Vision		

	Laboratory	Natural production
Cognition	Cognitive psychology	Linguistics
Vision	Visual psychophysics	

	Laboratory	Natural production
Cognition	Cognitive psychology	Linguistics
Vision	Visual psychophysics	?

	Laboratory	Natural production
Cognition	Cognitive psychology	Linguistics
Vision	Visual psychophysics	Visual linguistics

Study of the relationship between the visual system and human-produced visual signs.

Two visual linguistics research directions thus far...

PART I

Natural scene statistics and shapes of visual signs

PART I

Natural scene statistics and shapes of visual signs

...*or*... Why visual signs are shaped the way they are.

Dr. Mark Changizi, Sloan-Swartz Center for Theoretical Neurobiology, Caltech (KITP Understanding the Brain Program 9/07/04)

Dr. Mark Changizi, Sloan-Swartz Center for Theoretical Neurobiology, Caltech (KITP Understanding the Brain Program 9/07/04)

(1) Characters from 115 non-logographic writing systems.

(2) Thousands of Chinese (logographic) characters (Manser et al., *Pocket Oxford Chinese Dictionary*, 2003)

(3) Thousands of non-linguistic symbols (Dreyfuss, *Symbol Sourcebook*, 1972)

				length	stroke types	s characters	edges
Name	Kind of system	Date	Phylogeny	- L	В	C	5
47 Iberian (northern) DP 19	alphabet (sylla	nic) -1000	Punic>	3.	16 1	1 2	6
48 Iberian (southern) A O	alphabet (sylia)	aic) -1000	Punic ->	3.	14 1	1 2	2
49 International phonetic 1	# S alphabet	1847	Invented: Isaac Pitman and Henry Ellis	2	12 4	7 17	0 1
50 Kannada # 50 75	abunida	550	Brahmi	2	70 3	4 4	7
Et Varanda O D S	uuuguu	660	Diskani k		10 1	0 1	0
STRAFFAGA (7 5 %	nomeral	550	Dianini>	1.	10 10	0 1	0
52 Knaroshthi 58 5 Y	abugida	-450	Aramaic>	1.	2 3	0 3	9 0
53 Kharoshthi 1 P P	numeral	-450	Aramaic ->	1	38	/	8
54 Khmer Fi B B	abugida	611	Brahmi> Pallava>		19 3	3 6	8
55 Khmer 9 10 m	numeral	611	Brahmi> Pallava>	3.	70 1-	4 1	0
56 Korean (Hangeul) F .u.	天 alphabet	1446	Invented: King Seycong	2.	33	8 2	4
57 Kpelle # 6 %	syllabary	1930	Invented: Chief Gbili	3.	7. 7.	4 8	8 1
58 Latin, ancient A B C	alphabet	-650	Greek> Etruscan>	2.	37 1	0 2	1
59 Latin modern a b c	alphabet	1600	Greek> Etruscan> ancient Latin>	2	1.	4 2	6
60 Latin modern all-caps A	B C alphabet	1600	Greek -> Etruscan -> ancient Latin ->	2	50 1	7 2	6
61 Lencha (Rona) # (f (a ahunida	1720	Brahmi -> Davananari -> Tibatan ->	2	18 4	4 7	7
Collegence (Dens) & 2	9	1700	Brahani - Octobragani - Taletani -	2	10 1	6 1	0
C2 Lepena (Rong) 7 K	e numeral	1720	Brahmi -> Devanagan -> Tibetan ->	2.	10 1	4 1	2
63 Limbu Z LL S	abugida	1/3	Branmi> Devanagan> Libetan> Le	pena> Z.	31 3	4 3	1
64 Linear B 17 F D	syllabary	-1550	Linear A ->	5.	13 3	4 7	3 1
66 Marsiliana A B C	alphabet	-650	Greek ->	2.	1 88	5 2	6
66 Meroitic (non-hieroglyphic	:) \$ + / abugida	-250	Ancient Egyptian>	3.	16 1	9 2	3
67 Messapic A B F	alphabet	-550	Greek>	2.	37 1-	4 2	3
68 Middle Adristic (South Pir	cene) A B C alphabet	-650	Greek> Etruscan>	2	70 1.	3 2	3
69 Middle Persian (Pahlavi)	bride 2 C E	200	Aramaic>	2	10 1	6 2	2
70 Mkhedruli x A A	alphabet	1200	Greek -> Asomtamii -> Nushka-khuru	n	21 3	8 3	8
71 Monaclian	alphabet	1160	Aramaic -> Sourtian ->	3	29 2	8 3	5
70 Mongolian C - C	aiphauei	4450	Aramaic -> Ouguan ->		10 4		0
72 Mongolian 46 10 10	numeral	1154	Aramaic -> Sogolan ->	1.	50 1	1 1	0
/3 Nabataean J 5 19	abjad	50	Aramaic>	1	1 1	8 2	2
74 Ndjuka' → C F	syllabary	1910	Invented: Ataka Atumisi	2.	35 3	6 5	2
75 New Tai Lue 00 4) 02	numeral	1950	Invented: unknown	2.	23 1.	2 1	0
76 NKo 4 9 1	alphabet	1949	Invented: Soulemayne Kante	2.	14 2	0 2	2
77 NKo # # #	numeral	1949	Invented: Soulemayne Kante	2	50	6 1	0
78 North Picene, B, B (alphabet	-650	Greek> Etruscan>	2	57 1	3 1	8
79 Nuskha,khururi T H	TT alchabat	850	Greek -> Asomtavoli ->	3	18 1	6 3	8
20 Old Church Clauseie 4 4	alahahat	950	Creak >	2	12 2	7 4	2
21 Old Damain (Alexa) 77 4	a sa alphabet	\$200	In material, Pt. Phenham of Dames	3.	11 2	0 2	0
STORE Permic (Pober) > 00	alpradet	1390	invented. St. Scephen of Penn	3.	2	5 3	0
sz unya e/ el el	abugida	1051	Branmi> Kalinga>	2.	19 3	4 4	4 1
83 Oriya 9 9 9	numeral	1051	Brahmi> Kalinga>	1.	50 1:	5 1	0
84 Oscan A 8 >	alphabet	-650	Greek> Etruscan>	2.	71 1.	4 2	1
85 Pahawh Hmong C N	A alphabet (unus	ual) 1959	Invented: Shong Lue Yang	3.	30 4:	2 8	6
85 Pahawh Hmong Y S 1	laremun 00	1959	Invented: Shong Lue Yang	2.	50 1:	5 1	0
87 Parthian 2 V 7	abiad	100	Aramaic ->	2	59 1.	4 2	2
88 Parthto T J	ahiad	600	Aramaic -> Nabataean -> Arabic ->	2	73 2	0 4	0
89 Phase as TT 20 TH	aburada	1260	Brahmi -> Devanagan -> Thetan ->	4	53 2	1 4	0
60 Dhoseician Va 7 4	abogida	1203	Nothern Linear (Capacita)	4.	10 1	2 2	2
of Defend Mars 0 7 1	abjau	-1200	fromen brear (Gallaante)>	6			*
91 Polard Miao S S A	alphabet (unus	1906	invented, Samuel Pollard	2.	2	4	4
32 Hsalter 3 2 3	abjad	100	Aramaic>	2.	10 1	a 5	1
93 Redjang (Kaganga) 🖉	/* // abugida	1350	Brahmi> Pallava> Old Kawi>	3.	10 1	0 3	6
94 Runic (Danish Futhark) P	" h P alphabet	800	unknown	2.	53 1	0 1	6
95 Runic (Elder Futhark) P	n 🕨 alphabet	50	unknown	3.	13	6 2	4
96 Sabaean/Minean # #	1 abjad	-500	Southern Linear> Sabaean/Minean>	3.	55 1.	2 2	9
97 Samaritan 3 61 V	abiad	.50	Aramaic> Old Hebrew ???>	4	2 2	4 2	2
98 Santali (Ol Camat) 2	0 6 alnhahat	1920	Invented: Pandit Ranhunath Mumu	3	13 2	9 3	n
00 Santali (Ol Camat) (o o o o o o o o o o o o o o o o o o o	1020	Incented Panelit Packwath Mumu	3.	10 1	1 1	0
100 Citati Nami	numeral abund	1920	Invented, Paint Raghunath Mumu		10 1		4
The arou magh 4 % M	abugida	1300	inventeo, sant ordhjalal	3.	20 20	0 3	-
101 Somaii (Osmanya) 8 9	r -c alphabet	1922	invented: Cismaan Kenadiid	1.	2 2	a 3	0
102 Somali (Osmanya) § #	numeral 7	1922	Invented: Cismaan Kenadiid	1.	50 1:	5 1	0
103 Sorang Sompeng 1º 2	alphabet	1936	Invented: Mangei Gomango	2.	29 3	4 2	4
104 Sorang Sompeng 1	3 numeral	1936	Invented: Mangei Gomango	1	10 1:	2 1	0
105 South Arabian 8 8 5	abjad	-600	Southern Linear>	3.	29 1.	3 2	8
105 Sovembo 위 3 3	abucida	1695	Invented: Boodo Zanabazar	3	53 2	7 3	5
107 Suriac 1 - 1	abiad	400	Aramaic ->	2	27 2	5 2	2
102 Tanalon O T F	ahusida	900	Brahmi -> Pallan -> Old Kami ->	1	13 1	7 1	6
And Taskasan II T	abogida	300	Darkeri - Dallara - Old Kawi -	1.	10 10	0 4	6
109 Tagoanna X 1 >>	abugida	900	Dianimi> manaval> Old Kawi>	2	1	9 1	0
110 Jamil (5 60 28	abugida	-300	Brahmi>	2.	(4) 2	9 <u>3</u>	4
111 Thaana 1 2 9	abugida	1650	Invented: Unknown	2.	19 2	3 3	δ
112 Theban 1 4 1	alphabet	100	Invented: Unknown	3.	33 2	8 2	4
113 Tifnagh # I K	abjad	-100	Punic> Ancient Berber>	2.	38 1	3 2	5
	ability of all all all all all all all all all al	260	Graak> Etniegan>	2	18 1	6 2	1
114 Umbrian A 8 3	alphabet	-300	OTOON P Languages -				

Dr. Mark Changizi, Sloan-Swartz Center for Theoretical Neurobiology, Caltech (KITP Understanding the Brain Program 9/07/04)

Conclusion to Part I:

• There are regularities in the kinds of structures/shapes found in visual signs over human history.

• They appear to not be driven primarily by motor optimization. (trademarks, hand-sweeps, cursive and shorthand)

• Estimates of the ecological frequency of configuration types accords well with the frequencies across visual signs, suggesting that visual sign structures have been selected to match the contour-combinations found in natural scenes, because that is what the human visual system is good at processing.

PART II

Combinatorial structure of letters

Length L= 3 strokes per character, so the *maximum* number of degrees of freedom relating stroke types and characters is 3. I.e., $C \sim B^3$.

But the *actual* relationship between them from the plot is... $C = 0.268 \times B^{1.587}$. The combinatorial degree, $d = 1.587 \approx 1.5$.

Redundancy $R \equiv 1 - d/L \approx 50\%$.

Summary of Part II:
Writing systems increase in size via the invariant-length approach, not the universal-stroke-type approach. [*Suggests some upper limit to visual processing.* (?)]
The average number of strokes per character is ≈ 3. [*Why? Subitizing limit?*]
The number of stroke types increases, with combinatorial degree exponent of ≈ 1.5. (Via two distinct kinds of estimate.) Therefore, only half of the possible degrees of freedom are utilized, and thus redundancy ≈ 50%. [*Presumably useful for discriminability.*]

Su	mmary of ALL
•	Visual signs have been selected to be shaped like the ecology.
•	Letters in writing systems have been selected to have approximately 50% redundancy.
•	Visual linguistics—the study of human visual signs— may be a promising approach to discovering fundamental principles governing vision. (E.g., there is more likely to be mechanisms in the visual system for processing \pm than \pm .)
•	Future directions include:Human judgments of stimulus complexity.Camouflage and animal visual signalling.