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0.  General motivation for visual linguistics.

I. Natural scene statistics and shapes of 
visual signs.

II. Combinatorial structure of letters.

TWO PARTS, I and II
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PART 0

General motivation for 
visual linguistics

Cognition

Laboratory Natural production
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Visual linguistics

Study of the relationship between the 
visual system and human-produced visual signs.

Two visual linguistics research 
directions thus far…
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Two visual linguistics research 
directions thus far…

(1) Why visual signs are shaped the way they are.
•Are there any regularities in the shapes found in human-produced images?
•Why are letters and other visual symbols shaped the way they are?
•Ecological explanation/natural statistics.

(2) The complexity and redundancy of writing systems. 
• How many strokes per letter? 
• How combinatorially do strokes combine into letters? 
• How redundant?
• Are there laws across the hundreds of writing systems over history?
• Does the visual system prefer these settings? If so, why? 

Two visual linguistics research 
directions thus far…

(1) Why visual signs are shaped the way they are.
•Are there any regularities in the shapes found in human-produced images?
•Why are letters and other visual symbols shaped the way they are?
•Ecological explanation/natural statistics.
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PART I

Natural scene statistics and 
shapes of visual signs

PART I

Natural scene statistics and 
shapes of visual signs

…or…
Why visual signs are 

shaped the way they are.
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a    b    c

A   B   C

My ecological hypothesis

The configurations of strokes found in writing 
systems are selected to match the configurations 
of contours found in natural scenes, because that 
is what the visual system is good at processing.
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What I mean by “shape”: configurations
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Contiguous 
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Intuition pumping on sources 
of junctions in natural scenes, I
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Intuition pumping on sources of 
junctions in natural scenes, III

RARERCOMMONCOMMON COMMON

Occlusion
interpetation: 

none

15
TL

16
Π

13
H

14
TF

ECOLOGICAL PREDICTION

(a) Natural scene measurements

(b) Semi-a-priori predictions
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(a) Predictions from natural 
scene measurements

Sample of rural images
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Configuration spectrum 
for rural images
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Sample of urban images



Natural Scene Statistics and the Structure of Visual Signs Over Human History

Dr. Mark Changizi, Sloan-Swartz Center for Theoretical Neurobiology, Caltech 
(KITP Understanding the Brain Program 9/07/04) 15

Configuration spectrum 
for urban images
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(b) Predictions from a 
semi-a-priori analysis

a Pure-subconfigurations (36)

L-TX-subconfigurations (54)b

All (139)e

New relationships in transitive closure (31)d

c T-X-subconfigurations (18)

(40% of the 351 potential)
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DATA

(1) Characters from 115 non-logographic 
writing systems.

(2) Thousands of Chinese (logographic) 
characters (Manser et al., Pocket Oxford 
Chinese Dictionary, 2003)

(3) Thousands of non-linguistic symbols 
(Dreyfuss, Symbol Sourcebook, 1972)
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The non-logographic writing systems…
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Not a tautology
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Visual versus motor, I
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Testing the ecological hypothesis, I
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Conclusion to Part I:

• There are regularities in the kinds of structures/shapes found in visual 
signs over human history. 

• They appear to not be driven primarily by motor optimization. 
(trademarks, hand-sweeps, cursive and shorthand)

• Estimates of the ecological frequency of configuration types accords 
well with the frequencies across visual signs, suggesting that visual sign 
structures have been selected to match the contour-combinations found 
in natural scenes, because that is what the human visual system is good 
at processing.

PART II

Combinatorial structure 
of letters
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How do writing 
systems get larger?

Characters 

Characters Characters 

Universal type approach

length L increases [~ log C]
# stroke types B invariant.

Invariant-length approach

length L invariant.
C ~ Bd, where d≤ L, so 
B increases ~ C1/d

Stroke 
types

Stroke 
types

Stroke 
types
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Writing systems appear, then, to follow the invariant-length 
approach.

Recall that this implies that the number of stroke types must 
increase…
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# stroke types does indeed increase, as expected from the 
invariant-length.

But from the stroke-type plot, we can also infer how 
combinatorial characters are. 
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Length L= 3 strokes per character, so the maximumnumber of 
degrees of freedom relating stroke types and characters is 3. 
I.e., C ~ B3.

But the actual relationship between them from the plot is…
C = 0.268 × B1.587. The combinatorial degree, d = 1.587 ≈ 1.5.

Redundancy R ≡ 1 – d/L ≈ 50%.

There is another way to estimate combinatorial degree and 
redundancy…

If combinatorial, then stroke types in larger writing systems 
must interact with a greater number of other stroke types.
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Average degree per node does, indeed, increase. 
Namely approximately as δ ~ Cv, where v ≈ 0.24.

C ~ BδL-1 ~ BCv(L-1).

�

C ~ B1/[1-v(L-1)].

So, we can compute combinatorial degree d = 1/[1-v(L-1)].
For v ≈ 0.24, d ≈ 1.5.

Redundancy R ≡ 1 – d/L ≈ 50%, as before.
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Summary of Part II:

• Writing systems increase in size via the invariant-length 
approach, not the universal-stroke-type approach. 
[Suggests some upper limit to visual processing. (?)]

• The average number of strokes per character is ≈ 3. 
[Why? Subitizing limit?]

• The number of stroke types increases, with 
combinatorial degree exponent of ≈ 1.5. (Via two 
distinct kinds of estimate.) Therefore, only half of the 
possible degrees of freedom are utilized, and thus 
redundancy ≈ 50%. [Presumably useful for
discriminability.]

Summary of ALL

• Visual signs have been selected to be shaped like the 
ecology.

• Letters in writing systems have been selected to have 
approximately 50% redundancy.

• Visual linguistics—the study of human visual signs—
may be a promising approach to discovering 
fundamental principles governing vision. (E.g., there is 
more likely to be mechanisms in the visual system for 
processing       than       .)

• Future directions include: 
• Human judgments of stimulus complexity.
• Camouflage and animal visual signalling.


