
A Synaptic Theory of Gradient Learning with Empiric Inputs

Dr. Ila Fiete, KITP (KITP, Understanding the Brain Program 9/21/04) 1

Ila Fiete

Kavli Institute for Theoretical Physics

Synaptic theory of gradient learning 
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Types of learning

• Associations among events (and 
reinforcements). 
e.g., classical conditioning

• How one’s actions affect events (and 
reinforcements), how to shape actions. 
e.g., instrumental conditioning
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Outline

• Learning with reinforcements as 
optimization

• Synaptic learning rule

• Scale-up problem  

• Example: birdsong

• Implications
with Sebastian Seung
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Instrumental conditioning

Learning by reinforcement

Try multiple strategies; modify behavior in 
way that tends to improve reinforcement.

Thorndike, 1898
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Of several responses made to the same situation those which are 
accompanied or closely followed by satisfaction to the animal will 
become more likely to recur; those which are accompanied or closely 
followed by discomfort to the animal will, other things being equal, 
have their connections to the situation weakened, so that, when it 
recurs, they will be less likely to occur. The greater the satisfaction or 
discomfort, the greater the strengthening or weakening of the bond.

Thorndike, 1910

The law of effect

evaluation, not instruction
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Trial, reward, and optimization

reward = performance on task

behavioral neural

instrumental
conditioning

classical 
conditioning

Hebbian 
learning

?
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Octopaminesystem

VUMmx1

Insect olfactory 
learning

Dopamine system
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Neural basis of learning

Global signal
(Reward, motor error, etc.)

Local signals
(Voltage, calcium, etc.)

Synaptic plasticity

The interaction between global and local 
signals is largely uncharacterized.

R

?

Why difficult?
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performerevaluator experimeter

outputs

Learning with empiric inputs

Fieteand Seung
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-Reward optimization, but only on average.
-Model-free.
-Local to synapses aside from evaluation.
-Deals with delayed evaluation and dynamic 
synapses.
-Slow?

Stochastic gradient ascent

- Individual correlations small � long averaging?

- Apply to biological example.

Learning time

Birdsong learning

with Sebastian Seung & Michale Fee
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Social feedback and tutor song not needed. 

Auditory feedback of own song crucial.

Behavior

30 9060 1200

sensorimotor
sensory

days
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RA
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syrinxresp

Song circuit

DLM

X
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motor anterior forebrain

Lesion:

no song

premature 
crystallization 

Hahnloser et al.
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RA activity

Song representation

HVC generates a sparse sequence
later stages learn/perform the motor map
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LMAN activity is variable

Hessler & Doupe

auditory 
evaluation

motor
commands

vocal apparatus

motor 
network

Song system schematic

song

LMAN
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Scaling to large networks

Correlation of single neuron with reward = 1/N.
Time to learn ~ N?

HVC RA outputs
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factor of 4000 more neurons in bird:
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Redundancy and rank

Correlation of single output with reward = 1/No.

Time to learn ~ No.

Model: 2 outputs
Bird: 8 outputs

Neural or synaptic noise.  Time:  <8000 epochs.
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‘Simple’  tasks can be learned

• Learning time is independent of network size 
in redundant networks.

• Zebra finches practice 80,000 times.

• Motor control is redundant and learning is 
often slow.

Experimental probe

jx

iξixevaluator experimenter

0W∆ > 0W∆ <
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Why is the brain so noisy?

• Why is spiking irregular? 

• Why are synapses unreliable?

• Does the brain use noise for learning?
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Similarity to Hebbian learning?

jx

iξix

( )ij i i jW R sξ ξ∆ = −

strong noise input and weak regular inputs

( )i i jR sδ ξ≈ −

need segregated noise inputs so noise baseline correct

post noise spike increase active weights
no noise spike decrease active weights

noise as instruction

noise as exploration

reward

Supervised, reinforced, or unsupervised?

however, ‘ instruction’  is stochastic, uncorrelated with error
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Evidence of heterosynaptic plasticity

CA3
pyramidal dentate gyrus

MF

entorhinal 
cortex

Tsukamoto et al., 2003

also cerebellar CF, PF convergence at Purkinje cells

Practice vs. performance

Hessler and Doupe, 1999

directed

undirected
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IF dynamics
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