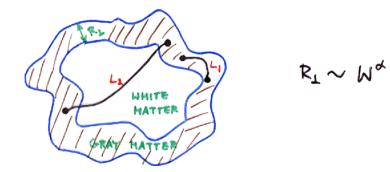
- CONSERVED RELATIONSHIPS
- AND TRADE-OFFS IN THE
 - BRAIN DESIGN

JAN KARBOWSKI

CALTECH

OUTLINE OF THE TALK:


- . INVARIANTS IN THE CORTEX
- MICROSCOPIC VS, HACROSCOPIC
 CONNECTIVITY
- TRADE-OFFS IN THE CORTEX DESIGN / FUNCTIONALITY

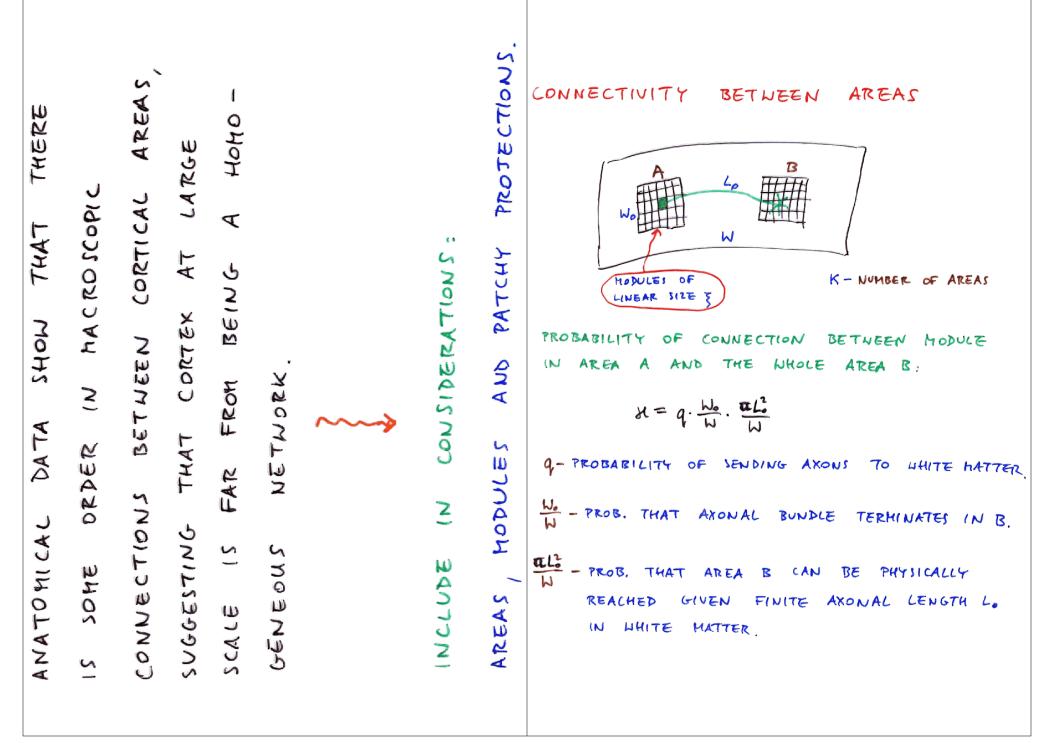
INVARIANTS IN THE CORTEX	MORE
· SURFACE DENSITY OF NEURONS	
$g = \frac{N}{W} = CONST$	• THE Excit
DENSITY OF SYNAPSES IN GRAY MATTER NM	
$\frac{NM}{V_g} = CONST$	· CORTI
DENSITY OF SHORT-RANGE AXONS IN GRAY MATTER NI.	
$\frac{NL_1}{V_g} = CONST$	
DENSITY OF LONG-RANGE AXONS IN WHITE MATTER	
$\frac{NL_2}{V_W} = CONST$	
$N - \#$ of Neurons in Cortex $V_{\rm W} \sim V_{\rm g}^{\chi}$ M - # of synapses per Neuron	
LI - SHORT-RANGE AXON LENGTH Y= 1.2 - 1.3	
L2 - LONG-RANGE AXON LENGTH	
Vg - GRAY MATTER VOLUME	
VW - WHITE MATTER VOLUHE	

MORE CORTICAL INVARIANTS ...

- THE RATIO OF THE NUMBER OF EXCITATORY TO INHIBITORY SYNAPSES
- · CORTICAL MODULE SIZE

SCALING LAWS SCALE TRANSFORMATIONS LEAVING THE ABOVE DENSITIES INVARIANT $N \longrightarrow N(s) = Ns$ $H \longrightarrow H(s) = Hs^{\alpha}$ $L_1 \longrightarrow L_1(s) = L_1s^{\alpha}$ $L_2 \longrightarrow L_2(s) = L_2s^{\mu(1+\alpha)-1}$ $R_1 \longrightarrow R_1(s) = R_1s^{d}$ $r \longrightarrow r(s) = rs^{k_2}$

AXON LENGTHS LI, L2 GROW EXPONENTIALLY WITH EXPONENT & FOR A GIVEN SCALE S.


MICROSCOPIC CONNECTIVITY AVERAGE CONNECTIVITY BETWEEN NEURONS: P = M/NFROM THE ABOVE INVARIANTS AND USING THE FACT THAT: $N \sim V_g^{0.9}$ WE OBTAIN $P \sim V_g^{-0.8}$

HICROSCOPIC CONNECTIVITY DECREASES QUICKLY WITH BRAIN SIZE (

EXAMPLE:

$$\frac{V_{g}(human)}{V_{g}(ral)} \approx 615$$

$$\frac{P(human)}{P(ral)} \approx \frac{1}{170}$$



PROBABLLITY THAT AREA A CONNECTS B:

$$Q = 1 - (1 - x)^{N-\sqrt{3}} \approx$$

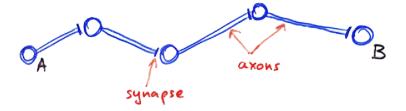
$$\approx 1 - \exp\left(-\frac{\alpha q L^{2}}{3^{1}K^{2}}\right)$$

$$\sum_{i} = 1 - \exp\left(-\frac{\alpha q L^{2}}{3^{1}K^{2}}\right)$$

Page 7

SCALING OF AREA CONNECTEDNESS EXAMPLES OF TRADE-OFF WITH BRAIN SIZE $Q = 1 - \exp\left(-AV_{g}^{s}\right)$ LOCAL INFORMATION TRANSFER UHERE · GLOBAL INFORMATION PROCESSING $\delta = 2(\beta - \overline{J})$ A is brain size indepen. Constant S = -0.28 FOR β = ₩ 0.26 S≈O FOR B≈0.4 AREA CONNECTEDNESS IS EITHER ONLY WEAKLY DEPENDENT OR INDEPENDENT OF THE BRAIN SIZE.

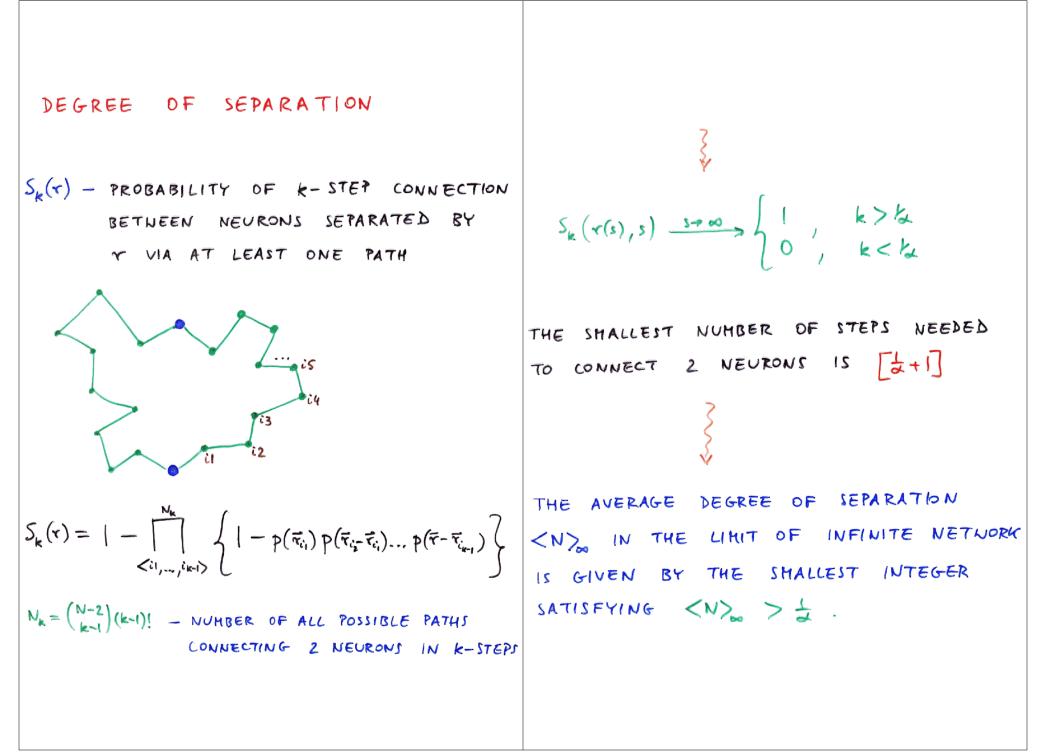
BRAIN RESOURCES

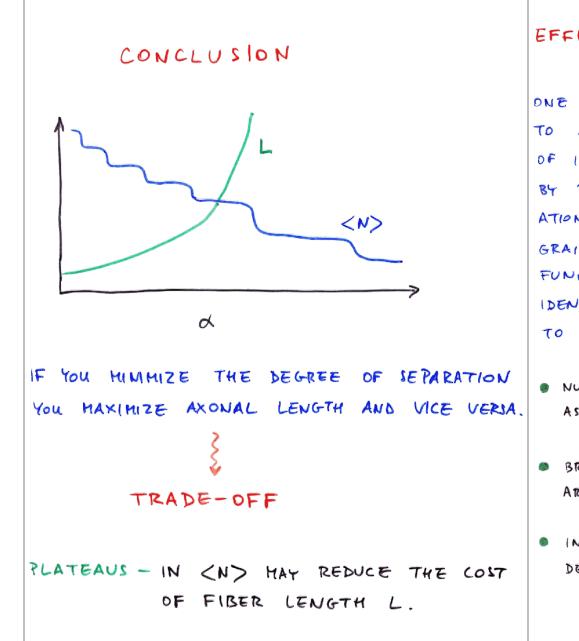

- BELIEF THAT CEREBRAL CORTEX IS DESIGNED IN SUCH A WAY AS TO SAVE LIMITED BIOCHEMICAL RESOURCES (CAYAL'II).
- AXONS (NIRE) PRIME TARGET OF SAVING IN THE BRAIN, SINCE THEY ARE IMPORTANT IN LONG DISTANCE COMMUNICATION BETWEEN AREAS.
- PRINCIPLE OF MINIMAL AXON LENGTH: CANDIDATE FOR AN OPTIMAL WIRING (MITCHISON'91, CHERNIAK '95, VAN ESSEN '97)

PROBLEM

• THE PRINCIPLE OF MINIMAL AXON LENGTH DOES NOT TAKE INTO ACCOUNT ENERGETIC CONSTRAINTS INVOLVED IN INFORMATION TRANSFER OVER LONG DISTANCES.

HOW TO MEASURE ENERGETIC COST ?

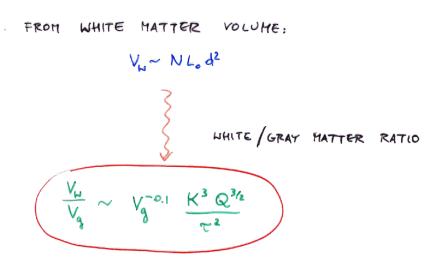

 ENERGETIC (HETABOLIC) COST OF INFORMATION TRANSFER BETWEEN NEURONS A AND B
 IS PROPORTIONAL TO THE AVERAGE
 NUMBER OF STEPS NEEDED TO CONNECT
 A AND B.


METABOLIC COST OF INFORMATION TRANSFER NAVERAGE DEGREE OF SEPARATION BETWEEN NEURONS,

Dr. Jan Karbowski, Caltech (KITP Brain Program 9-01-04) Conserved Relationships and Trade-Offs in the Brain Design

Page 9

Page 11


EFFICIENT COMPUTATION IN CORTEX

DNE OF THE MAIN OBJECTIVES BRAINS TRY TO ACCOMPLISH IS TO PROCESS VARIOUS FORMS OF INFORMATION. THIS GOAL CAN BE ACHIEVED BY POSSESSING A CERTAIN LEVEL OF COMPUT-ATIONAL POWER. IF WE FOCUS ON COARSE-GRAINED MACROSCOPIC DESCRIPTION THEN FEW FUNCTIONAL / ARCHITECTONIC PRINCIPLES CAN BE IDENTIFIED WHICH BRAINS HAVE TO MEET TO EFFICIENTLY PROCESS INFORMATION:

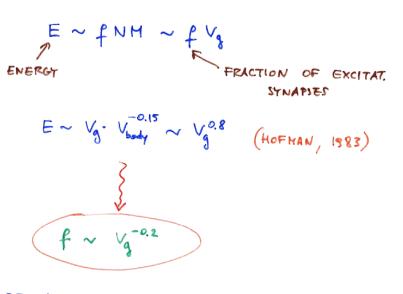
- AS POSSIBLE WITH THE BRAIN SIZE.
- BRAINS SHOULD TRY TO HAINTAIN A CONSTANT AREA CONNECTEDNESS REGARDLESS OF THEIR SIZE
- INTRA AND INTER-HEMISPHERIC TEHPORAL
 DELAY SHOULD NOT INCREASE WITH BRAIN SIZE.

T~ Lo de AKON DIAMETER

IF THE ABOVE 3 HYPOTHETICAL GLOBAL FUNCTIONAL PRINCIPLES WERE SATISFIED SIMULTANEOUSLY, THEN THE WHITE MATTER VOLUME WOULD HAVE TO GROW EXCESSIVELY WITH GRAY MATTER DUE TO FAST GROWTH OF K³ WITH BRAIN SIZE. BETTER STRATEGY TO OPTIMIZE TRADE - OFF:

TO REDUCE EXCESSIVE SCALING VW WITH Vg:

- · SLOWER INCREASE OF K WITH BRAIN SIZE
- · SLOW INCREASE OF T WITH BRAIN SIZE


· SLOW DECREASE OF Q WITH BRAIN SIZE

SUCH STRATEGY SEEMS TO BE TAKEN BY BRAIN DEVELOP, SINCE...

~ ~ ~ Vg Q~ Vg^-0.28

THIS COMPROMIZE MIGHT LEAD TO SLIGHT DECREASE IN INFORMATION-PROCESSING CAPABILITIES OF THE BRAIN AS IT GETS BIGGER ... METABOLIC COST OF THE WHOLE CORTEX

HOW MANY SYNAPSES IS ACTIVE AT RESTING CONDITIONS ?

AS BRAIN GETS BIGGER RELATIVELY LESS SYNAPSES IS ACTIVE !

SUMMARY

ARCHITECTURE AND SIZE OF THE CEREBRAL CORTEX ARE SHAPED BY DIFFERENT CONSTRAINTS WITH CONFLICTING OUTCOMES

DESPITE THIS COMPETING CONSTRAINTS, EVOLUTION HAS FOUND WAYS TO DEVELOP FUNCTIONAL BRAINS, WHICH REPRESENT A BALANCED DESIGN THAT IS IN SOME SENSE OPTIMAL.