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Biological inspiration

+ Biological motivation for the Wright brothers in designing
the airplane



Robot dogs

Custom built version Sony Aibos

¢ Platforms for testing sensorimotor machine
learning algorithms



Robot hardware
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¢ Wide variety of sensors and actuators.



Perception and motor control
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¢ Wide variety of sensors and actuators are readily available



Legged league

¢ Each team consists of 4 Sony Aibo
robot dogs (one is a designated
goalie), with WiFi communications.

¢ Field is 3 by 5 meters, with orange
ball and specially colored markers.

¢ Game played in two halves, each 10
minutes in duration. Teams change
uniform color at half-time.

¢ Human referees govern kick-off
formations, holding, penalty area
violations, goalie charging, etc.

¢ Penalty kick shootout in case of ties
in elimination round.

¢ Recently implemented larger field and wireless
communications among robots.



Upennalizers 1n action

Penn (blue) vs. rUNSWift (red)
Final match, Robocup 2003

¢+ GOOAAALLL! 2nd place in 2003.




Robot software architecture

Perception

(Sensors) >

Cognition
(Plan)

¢ Sense-Plan-Act cycle.

Action
(Actuators)




Perception

View from Penn’s
omnidirectional camera




Robot vision

Color segmentation: estimate P(Y,Cb,Cr | ORANGE) from training images
Region formation: run length encoding, union find algorithm
Distance calibration: bounding box size and elevation angle

Camera geometry: transformation from camera to body centered coordinates

¢ Tracking objects 1n structured environment at 25 {ps



Image reduction
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Deterministic position:
(Xpait > Yoair)

Probabilistic model (Kalman):
P(Xpairs Ypai)

¢ 144 x176 x3 RGB 1mage to 2 position coordinates



Image manifolds
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¢ Variation 1n pose and illumination give rise to low
dimensional manifold structure



Matrix factorization

Data matrix:
ISR AR

X: 5(? 552
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Learning and inference of hidden units
1s equivalent to matrix factorization.

Prior probability distribution of hidden variables.



Linear factorization (PCA)
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Equivalent to singular value decomposition.

Degeneracy eliminated by constraining W
orthonormal, rows of V orthogonal.



PCA representation
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¢ Linear model: representation uses positive and negative
combinations to reconstruct original image.



Vector quantization
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Unary vectors

Columns of V constrained to be unary.

Winner take all competition between hidden
variables in modeling data.



VQ representation

W: 49 hidden units
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+ Weights cluster data into representative prototypes.



Constraints and representations

Model Constraints  Representation
VQ Vi = O Very sparse

for some k’
PCA V-7 =0 distributed

Hard constraints give rise to very sparse representations, with bases
identifiable as prototypes.

Soft constraints lead to a very distributed representation but with
features difficult to interpret.



Biological motivation

Firing rates of neurons are nonnegative

Synapses are either excitatory or inhibitory

What are the functional implications of these
nonlinear constraints for learning?



Nonnegative constraints

Hidden Prior:
Pv)>0 1iff v>0

M hidden variables

Excitatory Weights:

Wy >0

Visible Variables:

M
X~ ) Wyvy
k=1

N visible variables

Nonnegative hidden variables and weights.



Nonnegative factorization algorithm
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Multiplicative algorithm can be interpreted as diagonally
rescaled gradient descent.



Convergence proof

1 GI(V’ Vn) Upper bound:

F)<G(v,v,)
F(Vn) — G(Vnavn)

Vi Vi+1Vmin v

Update rule: v, =argminG(v,v,,)
\%

- F(Vn—irl)SG(VnHavn)SG(Vnavn):F(Vn)

Minimizing auxiliary function G is guaranteed to
monotonically converge to local minimum of F.



NMF learning
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NMF representation

W' 49 hidden units
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¢ Learned weights decompose the images into their
constituent parts.

¢+ Nonnegative constraint allows only additive combinations.



Learning nonlinear manifolds

Kernel PCA, Isomap, LLE, Laplacian Eigenmaps, etc.

Many recent algorithms for nonlinear manifolds.



Locally linear embedding
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LLE solves two quadratic optimizations using eigenvector
methods (Roweis & Saul).



Translational invariance

Application of LLE for translational invariance.



Action

M. Raibert’s hopping
robot (1983)




Inverse kinematics

H =R(0))oT(l})oR(0,)oT(ly)°R(03)°T(l3)

¢ Degenerate solutions with many articulators.



Eye movements

Eye muscles

(Yarbus, 1967)

+ Fast eye movements to scan visual environment



Neural integrator

Pastor et al., PNAS 91, 807 (1994)



Control of eye position

Fisheye.avi




[Line attractor

Eve posilion {deg)

¢ Low dimensional dynamics for motor control



Gaits
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4-legged animal gaits



Walking
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Single Joint Pocting

Inverse kinematics to calculate
joint angles in shoulder and knee

¢ Parameters tuned by optimization techniques



Behavior

SRI’s Shakey (1970)



Finite state machine

Search for
ball

|

Kick ball

See
ball
Goto ball
position
Close
to ball

Event driven state machine.



Sensor-actuator mapping

Sensor space Actuator space

Construct low dimensional representations for reasoning
about sensor stimuli to motor responses



Image correspondences

Object 1 Object 2

¢ Correspondences between images of objects at same pose



Data from the web...

¢ http://www.bushorchimp.com



Learning from examples

Given Data (X,,X,):
1 labeled N, exzt.mples N, exzt.mples
of object 1 of object 2
correspondences , , , ,
(D, dimensions) (D, dimensions)
Xl D,xn D,xN, ‘7
X2 szn E ? E DZXN2

Matrix formulation (n << N, N, )



Supervised learning

D,xn D,xN, ?
. S S I A, S
Dyxn ? D,xN,

Training Fill in the blanks:

Data (D,+D, ) x n labeled data
D, x D, parameters

Problem overfitting with small amount of labeled data



Supervised backprop network

Original:

Reconstruction:

Original:

Reconstruction:

¢ 15 hidden units, tanh nonlinearity



Missing data

T D;xn D xN, ?

D,+D, — FRR—
l D,xn | ? D,xN,
EM algorithm:

[teratively fills in missing data statistics, reestimates
parameters for PCA, factor analysis

Treat as missing data problem using EM algorithm



EM algorithm

min min ), X, —WiYi\z
Yic:ch Wi X

Y; <~ RY; W, <WR"

sothat yly =7

___________________________

Alternating minimization of least squares objective

function.



PCA with correspondences

Original:

Original:

¢ 15 dimensional subspace, 200 images of each object, 10 in
correspondence



Common embedding space

Two input spaces Common low dimensional space
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LLE with correspondences
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Quadratic optimization with constraints is solved with
spectral decomposition



LLE with correspondences

Original:

Original:

¢ 8 nearest neighbors, 2 dimensional nonlinear manifold



Summary

Adaptation and learning 1n biological systems for
sensorimotor processing.

Many sensory and motor activations are described by an
underlying manifold structure.

Development of learning algorithms that can incorporate
this low dimensional manifold structure.

Still much room for improvement...



