Machine Learning for Sensorimotor Procesing

Daniel D. Lee

Biological inspiration

- Biological motivation for the Wright brothers in designing the airplane

Robot dogs

Custom built version

Sony Aibos

- Platforms for testing sensorimotor machine learning algorithms

Robot hardware

- Wide variety of sensors and actuators.

Perception and motor control

- Wide variety of sensors and actuators are readily available

Legged league

- Each team consists of 4 Sony Aibo robot dogs (one is a designated goalie), with WiFi communications.
- Field is 3 by 5 meters, with orange ball and specially colored markers.
- Game played in two halves, each 10 minutes in duration. Teams change uniform color at half-time.
- Human referees govern kick-off formations, holding, penalty area violations, goalie charging, etc.
- Penalty kick shootout in case of ties in elimination round.

- Recently implemented larger field and wireless communications among robots.

Upennalizers in action

- GOOAAALLL! 2nd place in 2003.

Robot software architecture

- Sense-Plan-Act cycle.

Perception

View from Penn's omnidirectional camera

Robot vision

Color segmentation: estimate $\mathrm{P}(\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr} \mid$ ORANGE) from training images
Region formation: run length encoding, union find algorithm
Distance calibration: bounding box size and elevation angle
Camera geometry: transformation from camera to body centered coordinates

- Tracking objects in structured environment at 25 fps

Image reduction

$\left[\begin{array}{ccc}(53,65,27) & (52,67,35) & \ldots \\ (48,68,31) & \ddots & \\ \vdots & & (250,213,196)\end{array}\right]$

Deterministic position:

$$
\left(x_{\text {ball }}, y_{\text {ball }}\right)
$$

Probabilistic model (Kalman):

$$
P\left(x_{\text {ball }}, y_{\text {ball }}\right)
$$

- $144 \times 176 \times 3$ RGB image to 2 position coordinates

Image manifolds

- Variation in pose and illumination give rise to low dimensional manifold structure

Matrix factorization

Data matrix:

$$
\left\langle x_{i}\right\rangle=\sum_{k=1}^{M} W_{i k} v_{k}
$$

- Learning and inference of hidden units is equivalent to matrix factorization.
- Prior probability distribution of hidden variables.

Linear factorization (PCA)

$$
\left.\begin{array}{c}
X=\left[\begin{array}{c}
\vdots \\
\vec{x}_{1} \\
\vdots
\end{array}\right)\left(\begin{array}{c}
\vdots \\
\vec{x}_{2} \\
\vdots
\end{array}\right) \cdots \\
\cdots
\end{array} \begin{array}{c}
\min \|X-W V\| \\
W, V \\
\text { subject to constraints: }
\end{array}\right] \quad W^{T} W=I .
$$

- Equivalent to singular value decomposition.
- Degeneracy eliminated by constraining W orthonormal, rows of V orthogonal.

PCA representation

- Linear model: representation uses positive and negative combinations to reconstruct original image.

Vector quantization

$$
\begin{array}{cc}
X_{i j} \approx \sum_{k=1}^{M} W_{i k} V_{k j} & \text { Winner take all constraint: } \\
\min _{W, V}\|X-W V\| & V=\left[\begin{array}{l}
\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\cdots \\
\text { Unary vectors }
\end{array}
$$

- Columns of V constrained to be unary.
- Winner take all competition between hidden variables in modeling data.

VQ representation

- Weights cluster data into representative prototypes.

Constraints and representations

Model	Constraints	Representation
VQ	$v_{k}=\delta_{k k^{\prime}}$, for some k	very sparse
PCA	$\vec{v} \cdot \vec{v}^{\prime}=0$	distributed

- Hard constraints give rise to very sparse representations, with bases identifiable as prototypes.
- Soft constraints lead to a very distributed representation but with features difficult to interpret.

Biological motivation

- Firing rates of neurons are nonnegative
- Synapses are either excitatory or inhibitory
- What are the functional implications of these nonlinear constraints for learning?

Nonnegative constraints

Hidden Prior:

$$
P(v)>0 \text { iff } v \geq 0
$$

Excitatory Weights:

$$
W_{i j} \geq 0
$$

Visible Variables:

$$
x_{i} \approx \sum_{k=1}^{M} W_{i k} v_{k}
$$

- Nonnegative hidden variables and weights.

Nonnegative factorization algorithm

$\min _{W \geq 0, V \geq 0} F=\sum_{i j}\left|X_{i j}-(W V)_{i j}\right|^{2}$
Derivatives:

$$
\frac{\partial F}{\partial V_{i j}}=\left(W^{T} W V\right)_{i j}-\left(W^{T} V\right)_{i j}
$$

$$
\frac{\partial F}{\partial W_{i j}}=\left(W V V^{T}\right)_{i j}-\left(X V^{T}\right)_{i j}
$$

Inference:

$$
V_{i j} \leftarrow V_{i j} \frac{\left(W^{T} X\right)_{i j}}{\left(W^{T} W V\right)_{i j}}
$$

Learning:

$$
W_{i j} \leftarrow W_{i j} \frac{\left(X V^{T}\right)_{i j}}{\left(W V V^{T}\right)_{i j}}
$$

- Multiplicative algorithm can be interpreted as diagonally rescaled gradient descent.

Convergence proof

Upper bound:

$$
\begin{aligned}
& F(v) \leq G\left(v, v_{n}\right) \\
& F\left(v_{n}\right)=G\left(v_{n}, v_{n}\right)
\end{aligned}
$$

Update rule: $v_{n+1}=\arg \min G\left(v, v_{n}\right)$

$$
\longrightarrow F\left(v_{n+1}\right) \leq G\left(v_{n+1}, v_{n}\right) \leq G\left(v_{n}, v_{n}\right)=F\left(v_{n}\right)
$$

- Minimizing auxiliary function G is guaranteed to monotonically converge to local minimum of F .

NMF learning

NMF representation

- Learned weights decompose the images into their constituent parts.
- Nonnegative constraint allows only additive combinations.

Learning nonlinear manifolds

Kernel PCA, Isomap, LLE, Laplacian Eigenmaps, etc.

- Many recent algorithms for nonlinear manifolds.

Locally linear embedding

$$
\begin{aligned}
& E(W)=\sum_{i}\left|\vec{X}_{i}-\sum_{j} W_{i j} \vec{X}_{j}\right|^{2} \\
& \Phi(Y)=\sum_{i}\left|\vec{Y}_{i}-\sum_{j} W_{i j} \vec{Y}_{j}\right|^{2}
\end{aligned}
$$

- LLE solves two quadratic optimizations using eigenvector methods (Roweis \& Saul).

Translational invariance

- Application of LLE for translational invariance.

Action

M. Raibert's hopping robot (1983)

Inverse kinematics

- Degenerate solutions with many articulators.

Eye movements

Eye muscles
(Yarbus, 1967)

- Fast eye movements to scan visual environment

Neural integrator

Pastor et al., PNAS 91, 807 (1994)

Control of eye position

Line attractor

- Low dimensional dynamics for motor control

Gaits

- 4-legged animal gaits

Walking

Inverse kinematics to calculate joint angles in shoulder and knee

- Parameters tuned by optimization techniques

Behavior

SRI's Shakey (1970)

Finite state machine

- Event driven state machine.

Sensor-actuator mapping

- Construct low dimensional representations for reasoning about sensor stimuli to motor responses

Image correspondences

- Correspondences between images of objects at same pose

Data from the web...

- http://www.bushorchimp.com

Learning from examples

Given Data $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$:

- Matrix formulation ($\mathrm{n} \ll \mathrm{N}_{1}, \mathrm{~N}_{2}$)

Supervised learning

Training
Fill in the blanks:
Data
$\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \times \mathrm{n}$ labeled data $\mathrm{D}_{1} \times \mathrm{D}_{2}$ parameters

- Problem overfitting with small amount of labeled data

Supervised backprop network

Original:

Reconstruction:

Original:

Reconstruction:

- 15 hidden units, tanh nonlinearity

Missing data

EM algorithm:
Iteratively fills in missing data statistics, reestimates parameters for PCA, factor analysis

- Treat as missing data problem using EM algorithm

EM algorithm

- Alternating minimization of least squares objective function.

PCA with correspondences

Original:

Original:

- 15 dimensional subspace, 200 images of each object, 10 in correspondence

Common embedding space

Two input spaces

Common low dimensional space

LLE with correspondences

$$
\begin{aligned}
E\left(W^{1}\right)=\sum_{i}\left|\vec{X}_{i}^{1}-\sum_{j} W_{i j}^{1} \vec{X}_{j}^{1}\right|^{2} & \begin{array}{r}
\Phi\left(Y^{1}, Y^{2}\right)=\sum_{i}\left|\vec{Y}_{i}^{1}-\sum_{j} W_{i j}^{1} \vec{Y}_{j}^{1}\right|^{2} \\
E\left(W^{2}\right)=\sum_{i}\left|\vec{X}_{i}^{2}-\sum_{j} W_{i j}^{2} \vec{X}_{j}^{2}\right|^{2} \\
+\sum_{i} \vec{Y}_{i}^{2}-\left.\sum_{j} W_{i j}^{2} \vec{Y}_{j}^{2}\right|^{2} \\
\text { Correspondences: } i \in S_{c}: \vec{Y}_{i}^{1}=\vec{Y}_{i}^{2}
\end{array}
\end{aligned}
$$

- Quadratic optimization with constraints is solved with spectral decomposition

LLE with correspondences

Original:

Original:

- 8 nearest neighbors, 2 dimensional nonlinear manifold

Summary

- Adaptation and learning in biological systems for sensorimotor processing.
- Many sensory and motor activations are described by an underlying manifold structure.
- Development of learning algorithms that can incorporate this low dimensional manifold structure.
- Still much room for improvement...

