Machine Learning for Sensorimotor Procesing

Daniel D. Lee

Biological inspiration

 Biological motivation for the Wright brothers in designing the airplane

Robot dogs

Custom built version

Platforms for testing sensorimotor machine learning algorithms

Robot hardware

• Wide variety of sensors and actuators.

Perception and motor control

• Wide variety of sensors and actuators are readily available

Legged league

- Each team consists of 4 Sony Aibo robot dogs (one is a designated goalie), with WiFi communications.
- Field is 3 by 5 meters, with orange ball and specially colored markers.
- Game played in two halves, each 10 minutes in duration. Teams change uniform color at half-time.
- Human referees govern kick-off formations, holding, penalty area violations, goalie charging, etc.
- Penalty kick shootout in case of ties in elimination round.

 Recently implemented larger field and wireless communications among robots.

Upennalizers in action

• GOOAAALLL! 2nd place in 2003.

Robot software architecture

• Sense-Plan-Act cycle.

Perception

View from Penn's omnidirectional camera

Robot vision

Color segmentation: estimate P(Y,Cb,Cr | ORANGE) from training images Region formation: run length encoding, union find algorithm Distance calibration: bounding box size and elevation angle Camera geometry: transformation from camera to body centered coordinates

Tracking objects in structured environment at 25 fps

Image reduction

◆ 144 ×176 ×3 RGB image to 2 position coordinates

Image manifolds

 Variation in pose and illumination give rise to low dimensional manifold structure

Matrix factorization

- Learning and inference of hidden units is equivalent to matrix factorization.
- Prior probability distribution of hidden variables.

Linear factorization (PCA)

$$X = \begin{bmatrix} \begin{pmatrix} \vdots \\ \vec{x}_1 \\ \vdots \end{pmatrix} & \begin{pmatrix} \vdots \\ \vec{x}_2 \\ \vdots \end{pmatrix} & \cdots \end{bmatrix}$$
$$X_{ij} \approx \sum_{k=1}^{M} W_{ik} V_{kj}$$

 $\min_{W,V} \|X - WV\|$

subject to constraints:

$$W^T W = I$$

 $V V^T$ diagona

- Equivalent to singular value decomposition.
- Degeneracy eliminated by constraining W orthonormal, rows of V orthogonal.

PCA representation

W: 49 hidden units

• Linear model: representation uses positive and negative combinations to reconstruct original image.

Vector quantization

- Columns of V constrained to be unary.
- Winner take all competition between hidden variables in modeling data.

VQ representation

W: 49 hidden units

• Weights cluster data into representative prototypes.

Constraints and representations

Model	Constraints	Representation
VQ	$v_k = \delta_{kk'}$ for some k'	very sparse
PCA	$\vec{v}\cdot\vec{v}'=0$	distributed

- Hard constraints give rise to very sparse representations, with bases identifiable as prototypes.
- Soft constraints lead to a very distributed representation but with features difficult to interpret.

Biological motivation

- Firing rates of neurons are nonnegative
- Synapses are either excitatory or inhibitory
- What are the functional implications of these nonlinear constraints for learning?

Nonnegative constraints

Nonnegative hidden variables and weights.

Nonnegative factorization algorithm

$$\min_{W \ge 0, V \ge 0} F = \sum_{ij} |X_{ij} - (WV)_{ij}|^2$$

Derivatives:

$$\frac{\partial F}{\partial V_{ij}} = (W^T W V)_{ij} - (W^T V)_{ij}$$
$$\frac{\partial F}{\partial W_{ij}} = (W V V^T)_{ij} - (X V^T)_{ij}$$

Inference:

$$V_{ij} \leftarrow V_{ij} \frac{(W^T X)_{ij}}{(W^T W V)_{ij}}$$
Learning:

$$W_{ij} \leftarrow W_{ij} \frac{(XV^T)_{ij}}{(WVV^T)_{ij}}$$

 Multiplicative algorithm can be interpreted as diagonally rescaled gradient descent.

Convergence proof

Upper bound: $F(v) \le G(v, v_n)$ $F(v_n) = G(v_n, v_n)$

Update rule: $v_{n+1} = \arg\min_{v} G(v, v_n)$ $\longrightarrow F(v_{n+1}) \le G(v_{n+1}, v_n) \le G(v_n, v_n) = F(v_n)$

• Minimizing auxiliary function G is guaranteed to monotonically converge to local minimum of F.

NMF learning

NMF representation

W: 49 hidden units

- Learned weights decompose the images into their constituent parts.
- Nonnegative constraint allows only additive combinations.

Learning nonlinear manifolds

Kernel PCA, Isomap, LLE, Laplacian Eigenmaps, etc.

• Many recent algorithms for nonlinear manifolds.

Locally linear embedding

 LLE solves two quadratic optimizations using eigenvector methods (Roweis & Saul).

Translational invariance

• Application of LLE for translational invariance.

Action

M. Raibert's hopping robot (1983)

Inverse kinematics

 $H = R(\theta_1) \circ T(l_1) \circ R(\theta_2) \circ T(l_2) \circ R(\theta_3) \circ T(l_3)$

• Degenerate solutions with many articulators.

Eye movements

(Yarbus, 1967)

• Fast eye movements to scan visual environment

Neural integrator

Pastor et al., PNAS 91, 807 (1994)

Control of eye position

Line attractor

• Low dimensional dynamics for motor control

Gaits

4-legged animal gaits

Walking

Inverse kinematics to calculate joint angles in shoulder and knee

Parameters tuned by optimization techniques

Behavior

SRI's Shakey (1970)

Finite state machine

• Event driven state machine.

Sensor-actuator mapping

 Construct low dimensional representations for reasoning about sensor stimuli to motor responses

Image correspondences

• Correspondences between images of objects at same pose

Data from the web...

http://www.bushorchimp.com

Learning from examples

• Matrix formulation (n $\leq N_1, N_2$)

Supervised learning

Training
DataFill in the blanks:
 $(D_1+D_2) \times n$ labeled data
 $D_1 \times D_2$ parameters

Problem overfitting with small amount of labeled data

Supervised backprop network

• 15 hidden units, tanh nonlinearity

Missing data

EM algorithm:

Iteratively fills in missing data statistics, reestimates parameters for PCA, factor analysis

• Treat as missing data problem using EM algorithm

EM algorithm

Alternating minimization of least squares objective function.

PCA with correspondences

Original:

Original:

 15 dimensional subspace, 200 images of each object, 10 in correspondence

Common embedding space

Two input spaces

Common low dimensional space

LLE with correspondences

 Quadratic optimization with constraints is solved with spectral decomposition

LLE with correspondences

Original:

• 8 nearest neighbors, 2 dimensional nonlinear manifold

Summary

- Adaptation and learning in biological systems for sensorimotor processing.
- Many sensory and motor activations are described by an underlying manifold structure.
- Development of learning algorithms that can incorporate this low dimensional manifold structure.
- Still much room for improvement...