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Good reason to study
insect brains...

"It is indubitable that
zoologists, anatomists and
psychologists have slighted
the insects. Compared with
the retina of these
apparently humble
representatives of life,

the retina of the bird or
the higher mammal appears
as something coarse, rude,
and deplorably elementary.” Vv |

(Ramon y Cajal, 1937)
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Blowfly, Calliphora vicina

Land and Collett, 1974
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The rocky road to perception

Adapted from Gary Larson
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Decision making in the ideal world...

and in the real world

From raw data to feature extraction

Raw sensory input implicitly contains relevant features.
These are extracted by the brain through computation.

Making sense of neural signals:

* Input signals are complex, ambiguous, noisy
Seldomly clear what feature is computed

* Input space is high-dimensional

Slmpllfy computation of motion in fly visual system
* Input signal and noise (pho‘rorecep‘rors) can be quantified
* Good guess for function in behavior: velocity estimation
* Reduced dimensionality: nearest neighbor interactions
* The problem is mathematically tractable
+ Very important in the fly's life
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Computing velocity: the gradient mode/

.
Rigid motion of contrast pattern: C(x,7) = C{x - J'l/(r)a’r}
0
(C contrast, x position, t time, V' velocity)
partial derivatives : 0.C(x,t)=-V(t)L",
0.C(x,t)=C".
So, from the observed C(x,7) we can

estimate velocity as follows : V(1) = {_ DfC(le)j|

0.C(x.1) |

How do animals estimate motion?

Beetles and flies
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Behavioral experiments on the
Beetle Chlorophanus,
(Reichardt, 1961)
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Simplified correlator mode/
(Reichardt & Hassenstein, 1956)

Problem: this is very
@' """" > different from pure
velocity estimation.
detectors\o/ Is this model generally
valid?

Take a second look, in the
delay At fly visual system...
multiplier
Spatiotemporal correlation
hallmark. response & C?

Wide-field motion by spatiotemporal correlation

Ix, 1) = I {x1) + I x-¢x ,1-<¢1),
where I, has autocorrelation xX,(x,7):
Xo(x, 1) = 2(x)2(7).
Therefore, I has autocorrelation x*(x,7):
() =22 (X)L (F) +[2 (x-0x)2 (F-0H+2 (x+0x) 2
(r+<¢h)]

The brain detects this spatiotemporal correlation and

intferprets it as wide-field motion.
O To see motion you don’t need a moving object!
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Inputs to motion computation in the fly retina
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Fly brain: horizontal cross section

photoreceptors

lamina

\"w‘y.[ 177
medulla Nveif)

lobula complex

‘ to thoracic ganglion ‘ Kirschfeld 1979
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Large-field tangential cells in the lobula plate:
structure and signals

Kirschfeld, 1979

Hausen, 1981 /¢

Typical laboratory experimental setup
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What does the fly do?
Low contrast pattern: High contrast pattern:
biased estimator unbiased estimator
rate depends on velocity, rate depends on velocity,
and also but is
depends on Contrast independent of Contrast

| |
Smooth transition
| |

computation: correlation computation: gradient ratio
_| 0,6(x,1)
VM) = AlCn)xElcten] - Vea ()= { m}

The fly computes motion, but does so in
peculiar ways. Is there a ‘right” way?
How should we even approach this question?

Problems:

* Photon shot noise

- Diffraction and finite sampling

* Variations in illumination

* Variations in contrast

* Independently moving objects

+ Components of ftranslational motion, etc.

We'll take an experimental statistical approach...
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The brain as a velocity estimator

The brain needs to know the conditional probability:
P(featurel|input)

Here: feature = V(1)

Here &2.,C, &2,C are “sufficient visual primitives”; they
contain all raw data needed to compute velocity.

We need to “know" P:

measure PV |&.C &.C]

Measure visual input and full field motion

188) =

11 dHos

NS

14-pixel line camera rotation sensor photodetector array
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Sample joint distribution of natural velocity &
contrast gradients

Sample contrast as a function of space and time: C(x,7),
and angular velocity of photodetector array: V(7.

From this, get the joint distribution:  A(0,c,0,C,V),
and the conditional distribution: PV |0,c,0,0).

The "best estimate” of velocity, given the time and space
gradients, is the conditional mean:

V..(0,€,0,6)= [PV 10,€,0,6)WaV

Local velocity estimates from photodetector signals

time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

o w

detector angle (°)
n
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Simple computations represented as contours
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Wide-field estimate = slope of best fitting line

Fit ¥ = a X, based on measurements {X,,V}.
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Velocity estimated from moving sinewave pattern
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Velocity estimated from moving sinewave pattern:
the optimal estimator is biased at low contrast!

Vstimuius °/8)
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Velocity estimated from moving sinewave pattern:
comparing HI and the optimal estimator
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Recapitulation

Optimal velocity estimators must compute biased
velocity estimates: the less reliable the input, the larger
the bias. The fly has similar bias, suggesting that it
approaches optimal computation.

Fly and optimal estimator combine the behavior of two
well-known models of motion detection.

But is this all relevant to a real fly?
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Setup for outdoor experiment

electrode holder mounted on stepper motor
and amplifier .

rotation axis

Visual stimulus and neural response in outdoor experiment

180° O horizontal field of view of H1
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Spike responses to repeated motion stimulus outdoors
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Spike timing precision as a function of light leve/
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Spike timing and information transmission

Intuitively: information carrying capability goes up if time
resolution improves. This is quantified by the total entropy:

‘Sfaml = _;P(W)IOQZ[P(W)]

This specifies an upper bound on information transmission,
which is only realized if all capacity is used to encode signals.
This is not generally true; the discrepancy is measured by
the noise entropy:

Snoise = <-ZP(W | #)log,[P(W | 7‘)]>

The information transmitted is the difference of these two
entropies:
I =5

total

S,

noise
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Fluctuations in mean light level produce
variations in spike timing
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At lower input SNR,
details matter more
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Recapitulation

«  Optimal velocity estimators must compute biased
velocity estimates: The less reliable the input, the larger
the bias. The fly has similar bias, suggesting that it
approaches optimal computation,

*  Fly and optimal estimator combine the behavior of two
well-known models of motion detection.

Innatural conditions, precision is limited by external
noise. I't makes sense to build computational strategies
that take input reliability into account.
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+ Study dynamics of motion estimation and coding
+ Two-dimensional optical input, 3 axes of rotation
* Move fly along 3-D trajectories

Weidema
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