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Learning and credit-assignment

Example: learning a complex movement
(walking, riding a bike, skiing....)

A task generally composed of many
coordinated sub-tasks but the error 1s often
only global.

Many muscle involved, which muscle
command should be modified to avoid
falling?

A supplementary difficulty : the sign of the
error 1s not known i.e. was one particular
muscle too contracted or not enough?




A possible solution : trial and error.,

-During the task, perturb a few elements (cells, synapses,...)
(...Doya and Sejnowski, 1995;...; Seung, 2004; Fiete et al, 2007;..)

-> Changes 1n the task performance can be attributed to the
elements that were perturbed

An attractive framework that has been primarily considered in the
context of song learning in birds but detailed implementation still to be
worked out (how 1s the song evaluated, where are the sites of
plasticity,...?)

Here : examine the question for learning complex coordinated
movements at the level of the cerebellum.



Learning by trial-and-error/stochastic gradient descent
in the cerebellum?

The questions we would like to anwer :

-During the task, a few cells should be perturbed ->
Question I : what is the source of this perturbation?

-Evaluation of the current performance needed to evaluate whether the

perturbation has improved or deteriorated 1t ->

Question II : where is current performance stored/how 1s the
comparison made?

Question III: characteristics of the resulting learning algorithm
(convergence, speed, ...)?

Question IV: specific experimentally testable predictions?



Outline.

- Cerebellum and movement learning : cerebellar anatomy and the
classical Marr-Albus theory

A new proposal

Some experimental results

Simple mathematical implementations and analysis

Further theoretical questions and experiments



The cerebellum 1s a main site of motor learning

Vestibulo-ocular reflex (VOR)
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Learning a gain change in the VOR 1s dependent on cerebellum



Cerebellum circuitry
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Two types of spikes in Purkinje cells (PC):
-simple spikes (SS) from granule cells/parallel fibers
-complex spikes (CS) from inferior olive/climbing fibers



Classic theory of cerebellar learning (Marr-Albus-Ito):

Plasticity of the parallel fibre (PF)-Purkinje cell synapse
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Classic theory of cerebellar learning (Marr-Albus-Ito)

Climbing fibers : error signal -> depression of PF-PC synapse

1]
In cerebellar slices: PF
CF | 1/LTD

Compensating potentiation : high frequency PF activity
with no error signal



Marr-Albus-Ito theory : some questions/difficulties

- In the theory of M-A-I, errors always lead to synaptic depression. Is it the case that
errors always come from too strong synapses?

- the VOR is a simple task, sign of the error clear (given by retinal slip). For subtasks
of complex movements less so, how can one determine if a synapse should be

depressed or potentiated?

- For complex movements, how does the brain determine the precise source of error, the
precise muscle that was not enough or too much contracted?

« Credit assignment problem » (Minsky, 1961)



The present proposal :

the cerebellum learns complex movements by performing
stochastic gradient descent guided by a global estimate of
the movement performance.



Proposal I : perturbation source

Climbing fiber- induced complex spikes serve both as perturbations
of movements and as a signal errors (as classically proposed)

Olivary cells are spontaneously active at 1Hz



Consequences for synaptic plasticity rules

Predicted rules Classical theory/results

LTP LTD
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Change to standard protocols (to approach more physiological conditions) :
-lowered extracellular calcium (2mM->1.5mM)

-Weak stimulation of granule cell layer (instead of parallel fibers)
-inhibition not blocked



Plasticity protocol Test (pair of PF pulses before and

after stimulation)
repeated every 2s between 10mn i.e. 300 times
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Proposal II : storage of current performance/
comparison with perturbed task

Proposal: the level of current performance is measured by the level
of inhibition of olive neurones provided by NoN neurones
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Plasticity site : - NoON —>10 synapses ?
- MF -> NoN synapses
(related plasticity observed at MF->PN synapses)




A toy model

N cells with firing rates P, ....Py
Successful task firing rates  T,,......Ty
Mean error 1

Et) =+ Z |Pi(t) — T

Internal estimated value of the error : I

Learning task : bring the P.’s to their target values T.’s



A toy model

Learning algorithm (I):

-choose randomly one of the rate i, and perturb it by A>0: P1 =Pi +A
-Error with perturbation

Z|P 04, A =T

-compare E estimated value of the error I

If E, <Igood to increase the rate, modify Pi, -> Pi1.+ AP,
update error estimation I -> I-— Al

It E,> I perturbation is bad, decrease P1, -> P1- AP,
I > I+AI



N=5, DF=0.3, DP=0.1, DI=0.04
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Error evolution

With these moves only, conservation of:

C = ](t) AP + A[Z P; (t) cannot converge!



Learning algorithm (II)

Remedy :

- make the previous moves with perturbation (« type A » )
with probability p

-  Make moves with no perturbation and just error estimation
adjustment (« Type B » ) with probability 1-p

« Type B » moves:

If E<I then I > I1-AI
If E>I I > I1+AI
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Toy model : convergence

Learning vs. time: estimated error (red) and true (black) error

nmax=10; pert xp=.1; modifs dr=.2, de=.5dr/nmax= .01; proba modif dr =.2
10 T | T

0 5000
Iterations

Three successive phases in the learning dynamics

Role of the different parameters? convergence speed?



The one cell case

One pattern, cell fires with rate P, desired firing rate T.
Current inhibition on olive |

Two types of trials :
-Perturbation with probability p, P->P+A, E = IP+A -TI

If E>1, error CS, P>P-AP,I1->1+ Al
E <1, no error CS, P->P+AP, I ->1-Al

-No perturbation with probability 1-p, E = IP-TI
If E>1, error CS, I->1+ Al (Punchanged)
E <I,noerror CS, I ->1+ Al (P unchanged)



Convergence 1n 3 phases
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One cell (P, I) phase-plane dynamics

N dynamics \, A dynamics
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Different parameter regimes

A, p, AP, A
(large perturbation A>> AP, Al)

Convergence speed
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synaptic
weights

Simple mathematical description

- Purkinje cell as an analog perceptron ™
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Perceptron plasticity rules
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Synaptic weight changes :

Nn=0,1 with prob. p perturbation A
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Relation to toy model

AP = o, fy/ Ny
Al = ayf+/ Ny



Perceptron : learning p patterns with estimated error

N=1000, coding fraction {=0.2
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N cells, estimated global error



Many cells

Reduced model : multiple cells
(black: individual Di, red:mean error, yellow: analytics;N=100, A=2, AP=0.2, AI=0.004, (lI=2, p=0.75)
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Generalized analysis possible, cells
successively reach their limiting rates
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What’s next ?
Theory :

- convergence dynamics with ‘interfering’ patterns
- different forms of global error

Experiment : in vivo data

- evidence from perturbation during movement
- extraction of plasticity rules from data

Both : - Other structures where a similar type of
learning may apply? (e.g. basal ganglia; dopamine
release signals reward but also promotes movement
initiation, plasticity rules involving this two successive
releases?).
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