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A new path to understanding vision

Traditional paths to understanding vision

(1) Low level vision, mid-level vision, high-level vision

(2) David Marr: primal sketch, 2.5 d sketch, 3-d model.
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Talk outline

(1) The functional role of the primary visual cortex (V1)

(2) In light of V1's role =
a new plan to understanding vision

(3) A first example study in this new plan



The primary visual cortex (V1)
1953, Stephen Kuffler, retina, 1959-- Hubel and Wiesel, V1
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The primary visual cortex (V1)
1953, Stephen Kuffler, retina, 1959-- Hubel and Wiesel, V1
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Then ...

Experimentally: V1 and beyond
Theoretical/modelling, Reichardt, Marr, etc.
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2005: How close are we to understand V17 Olshausen and Field 2005

Do we really know what the early visual system does?
Carandini, Demb, Mante, Tolhurst, Dan, Olshausen, Gallant, Rust, 2005

Standard models of V1 neural receptive field (combining filtering, rectification, squaring,
normalization) captures only 15-35% of the variances in V1 responses.

2012, David Hubel, in answer to “What Do You Feel Are the Next Big Questions in the Field?”

"We have some idea ... for the retina, the lateral geniculate body,
and the primary visual cortex, but that’s about it.”
(Hubel & Wiesel 2012, Neuron)



The primary visual cortex (V1)

1953, Stephen Kuffler, 1959-- Hubel and Wiesel, V1
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2005: How close are we to understand V1? Olshausen and Field 2005

Do we really know what the early visual system does?
Carandini, Demb, Mante, Tolhurst, Dan, Olshausen, Gallant, Rust, 2005

Standard models of V1 neural receptive field combining linear filtering,
rectification and squaring, and response normalization captures only 15-35% of
the variances in V1 responses.

2012, David Hubel, in answer to “What Do You Feel Are the Next Big Questions in the Field?”

"We have some idea ... for the retina, the lateral geniculate
body, and the primary visual cortex, but that’s about it.”
(Hubel & Wiesel 2012, Neuron)

Questions:
Is a lack o{understanding of V1

indering our progress beyond V17?

Functionally (in behaviour)?

Physiologically



Information bottlenecks in the visual pathway:

“To be or not to be,
This is the question ..”

107 bits/second
~ 108 neurons , 40 bits/second
~10 spikes/neuron (Sziklai,,1956)

~1 bit/spike \

10° bits/second (Kelly
1962) S SOMATO
~ 25 frames/second, S
2000x2000 pixels,
1 byte/pixel
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Information bottlenecks in the visual pathway:
Vision ~ Looking (selecting ) + Seeing

“To be or not to be,
This is the question ..”

107 (lgits/second 10 bits/second
~ Its/secon

top-down vs.[bottom-up selection ] Z10 spiresinediron (Szikiai, 1956)
~1 bit/spike

Task: find a uniquely oriented bar _
10° bits/second

(Kelly 1962)
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Information bottlenecks in the visual pathway:

Questions:
which brain areas are
doing the bottom-up
selection?

Frontal? Parietal?

“To be or not to be,
This is the question ..”

107 E)itS/SGCOI’]d 40 bits/second
top-down vs.[bottom-up selection ] Z10 spirasinedron (Szikiai, 1956)
~1 bit/spike

Task: find a uniquely oriented bar _
10° bits/second
(Kelly 1962)
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Information bottlenecks in the visual pathway:
Saliency regardless of visual features

Questions: — —
which brain areas are = T = n II [
doing the bottom-up — —— L ! ||II
selection? == = | |== = |yl

Frontal? Parietal?
Koch & Ullman 1985, Itti & Koch 2001, etc

“To be or not to be,
This is the question ..”

107 E)itS/SGCOI’]d 40 bits/second
top-down vs.[bottom-up selection ] Z10 spirasinedron (Szikiai, 1956)
~1 bit/spike

Task: find a uniquely oriented bar _
10° bits/second
(Kelly 1962)
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)

Retina Saliency V1 firing rates (highest
inputs map at each location)
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)

Retina V1 firing rates (highest
inputs at each location)
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The V1 Saliency Hypothesis: Neural activities as
A bottom-up saliency map in the primary visual cortex ( universal currency
to bid for visual

Retina V1 firing rates (highest selection
inputs at each location) /
o AR Winner-take-all
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)

V1

V1 firing rates (highest
at each location)

Winner-take-all

Superior
colliculus

+ + t + +
IR
+ t + ¢
t t
+ +
+ +
Bosolzing etal‘lo97 o 135" te0® + + + + +
] + + 4 +
iIso-feature yot o4t
. +
suppression + + +
(Blakemore & Tobin 1972, t +
Gilbert & Wiesel 1983,
Rockland & Lund 1983,
Allman et al 1985, Hirsch
& Gilbert 1991, Li & Li
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V1’ s saliency computation on other visual stimuli

V1 model output

Visual input
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)

V1 firing rates (highest

Retina V1 _
inputs at each location)
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)
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180°

A surprising
prediction:

an invisible
feature attract
attention!
(Zhaoping
2008, 2012)
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Testing the V1 theory on behaving monkeys --- Yan, Zhaoping, & Li, in press, PNAS 2018.
V1 neural responses to input stimulus (spikes/sec)

Saccade to an uniquely oriented bar ASAP
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faster saccades

for trials with slower or
failled saccades

Quantitative, zero-parameter, predictions from theory

A: Probability density (RTcar0)
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Now the zero parameter quantitative prediction (Zhaoping & Zhe 2012,2015)

First, recall from the theory:
maximum firing, (not summation of firing rates),

at a location determines its saliency

V1 neural firing

Retina inputs .

rates
T - — oty
e e t 4 > 4 MAX Winner-take-all
—_ — 4 Pt — quction for
—my = = ' + 4 attention

Neural activities as universal
currency to bid for visual selection.
The receptive field of the most active
V1 cells is selected



Predicting RT: | _
First a toy V1. some cells tuned to orientation, others tuned to color

Colour (C) singleton V1 responses RT
4 . Monotonic,
/——/——-—-_;,;:++:;, RT. =500 ms ,
/ i‘»ﬂ Color (C) cell /
7, A Max response: r
+
- ->
Orientation (O) singleton Firing rate r
’ , M 4| RT,=600ms,
\--t---- Ren:d Orientation (O) cell
’ / * + Max response: rq
Double (CO) RTco= 500 ms =min (RT., RTy)
singleton
RTeo =7
’ 4
s V01777 Ccell rg
4 O cell rg




Predicting RT: | _
First a toy V1. some cells tuned to orientation, others tuned to color

Colour (C) singleton V1 responses RT
4 . Monotonic,
+
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Predicting RT:

First a toy V1. some cells tuned to orientation, others tuned to color

Colour (C) singleton

/

4

‘s

V1 responses

Orientation (O) singleton

/

\

’

Double (CO)
singleton

/

\
4

4

Stochastic

C cell responses

10, 9, 11, ...

O cell responses
11,9, 8, 10, ...

P(RI\C) RT. distribution

A 3 RT.

P(RT,) RT, distribution

RT,

RT o= min (RT., RTy)

P(RTo)

=P[MIin(RTs, RTy)]

RTq distribution
A

RTqo




Behavioral data from Keene and Zhaeping (2007)
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Predict RT., from  RT.,=mIn(R1., RT,)

Probability Density (RTC)

N
T
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RT (second)

6 —

4+ Probability Density (RT O)

2 -

0 1 1 1 1 1 1 |
0.4 0.5 0.6 0.7 0.8 0.9 1

P value ~ 0.00

Predicted RT
significantly longer
than observed RT



Because --- real V1 has CO conjunction cells



Because --- real V1 has CO conjunction cells

Colour (C) singleton V1 responses
4 / = +
RSN B dl N
V4 =
Orientation (O) singleton RTCO<: min (RTC, RTQ)
4 haa
/ hia
N\ —> |+ _
Double (CO)
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V1 without CO cells,

—> RI.,=mIn(RT., RT},)

V1 with CO cells, =2 RT ., £ min(RT, RT))

Introduce another feature dimension: motion direction (M),

C singleton
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V1 without CO cells, =——> RI1,,=mIn(RT,, RT,)
V1 with CO cells, =2 RT ., £ min(RT, RT))

Introduce another feature dimension: motion direction (M),

V1 has no CMO cells, =

min(R CMO,) min( CM,RTCO,RT

nalogously

Predict



Distributions of RTs for a particular subject min(RTCMO,@ = min(@Ti@)

Probability Density (RTC) Probability Density (RTM) Probability Density (RTO)
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4 4
2
2 2
0 0 = 0
0.4 0.6 0.8 1 04 0.6 0.8 1 0.4 0.6 0.8 1
RT (second) RT (second) RT (second)
Probability Density (RT CM) Probability Density (RT c o) Probability Density (RTM o)
6 10 10
4
5 5
2
0 0 — 0
0.4 0.6 0.8 1 04 0.6 0.8 1 0.4 0.6 0.8 1
RT (second) RT (second)

>0.18,
cant



min(RT,,,,,&RT.,RT,,, R :min(@%@)

mean RTs
) m
0

Subject =SA, p=0.186, 0.358

0.6 0.8 1
RT



o ] min(RTCMO, T.,RT,,, R :min( TCM,RTCO,RTM)
Prediction=data for all six observers A &_)

P(RTCMO) ——— race(C,M,0,CMO)=race(CM,CO,MO)-- Nt=10, Nest=45
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V1 without CO cells,=2  RIT,, =mIn(RT,, RT})
V1 with CO cells, == RT, £ min(RT;, RT,)

nalogous
analogously

©
V1 has no CMO cells,=> min(RrT,,RT. RT,,RT,)qmin(RT,, RT,, RT,,
RT,,RT,, RT,) £min(RT,,,, RT,,, RT,,,)

N

Higher visual areas == min(r7,,,,
have CMO cells

Our data suggest that the higher
visual areas are not involved in
bottom-up saliency
computation.




Talk outline

(1) The functional role of the
primary visual cortex (V1) < Attentional selection

(2) In light of V1's role -
a new plan to understanding vision

(3) A first example study In this new plan



Information bottlenecks in the visual pathway:

“To be or not to be,
This is the question ..”

107 bits/second
~ 10% neurons , 40 bits/second
~10 spikes/neuron Bottom-up (Sziklai,,1956)
~1 bit/spike :

selection q \
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~ 25 frames/second,
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for motor e
Visual Encoding | —s | Selection —> Decoding s action or UNDERSTANDING
inputs J <— J cognitive \/|S|©N
decisions theory, models, and data
(e.g., by retinal (attentional (e.g., face
neural activities) often by sacc recognition)
to selected locatio i
20 frames, 40 bits/second __
20 megabytes/second e
.. . . . “To be or not to be,
Traditional paths to understanding vision This is the question ..”
. . . . . . .. 40 bits/second
(1) Low level vision, mid-level vision, high-level vision (Sziklai, 1956)
o \
(2) David Marr: primal sketch, 2.5 d sketch, 3-d model. e

(Kelly 1962) )
~ 25 frames/second,
2000x2000 pixels,

1 byte/pixel
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Talk outline

(1) The functional role of the
primary visual cortex (V1) < Attentional selection

(2) In light of V1's role -

a new plan to understanding vision
for motor
Visual | Encoding |—s | Selection > | Decoding |—s action or
Inputs < cognitive
decisions
(e.g., by retinal (attentional selection, (e.g., face
neural activities) often by saccading recognition)

to selected locations)

(3) A first example study in this new plan



A new path to understanding vision

for motor
Visual __ | Encoding |—s | Selection Decoding s action or
Inputs cognitive
decisions
(e.g., by retinal (attentional sefection,
20 frames, neural activities) often by saccaljing rec n|t|on
20 megabytes/second to selected locegions) its/second

Looking
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A new path to understanding vision

for motor
Visual __ | Encoding |—s | Selection Decoding s action or
Inputs cognitive
decisions
(e.g., by retinal (attentional sefection,
20 frames, neural activities) often by saccaljing rec n|t|on
20 megabytes/second to selected locegions) its/second
Looking
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Lookingk nd --- peripheral and central e
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Two separate processes e
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Demo: (zhaoping & Guyader 2007)
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' X’ shape recognition,

V1: tuned
to primitive

bars rotationally invariant
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Lookingk nd --- peripheral and central e

Two se parate processes ~ L = i
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Demo: (zhaoping & Guyader 2007)

Add a horizontal
bar or a vertical
bar to each
oblique bar

Add a horizontal
bar or a vertical
bar to each

oblique bar




Display span 46x32 degrees in visual angle --- condition A
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Gaze arrives at target after a few saccades
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Gaze dawdled around the target, then abandoned and returned.
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VISION
for motor
action or

cognitive
decisions

A new path to understandinc

Visual Encoding | —s | Selection

) Decoding
Inputs

(e.g., by retinal (attentional sefection,
20 frameS, neural activities) often by sacca Ing

20 megabyteslsecond to selected locions)
Looking

Peripheral vision
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Must qualitativelv
differ in Seein

‘i, Computational algorithms?

Central visior ‘
H Focus on feedforward-
* @G feedback / V1

A demo of crowding in the periphery




Summation percept dominant

Perception=7?

In V1, signals are efficiently encoded by
these two de-correlated channels
(Li & Atick 1994)

Subject task: report the
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Why does perception prefer ocular summation? (Zhaoping 2017)

for analysis-by-synthesis Feedforward, feedback, verify, and re-weight (FFVW)
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Proposal: Top-down feedback to V1 is weaker or
absent in peripheral vision for analysis-by-synthesis!




Why does perception prefer ocular summation? (Zhaoping 2017)

for analysis-by-synthesis Feedforward, feedback, verify, and re-weight (FFVW)
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Testing it in depth perception
Zhaoping & Ackermann, 2018
A central disk (non-zero disparity)

and a surrounding ring (zero disparitv)

A V1 neuron’s response to disparity

in random dot stereograms
209 Cell rb332

-
B =] o (=]
(=] [=] o (=]
1 1 L

Firing rate (impulses s

N
(=]
1

Dots for the 2
central disk

Anti-correlated

0.4

Disparity (degrees)

(Cumming and Parker 1997 )

Doi et al 2011 Proposal: Top-down feedback to V1 is weaker or

absent in peripheral vision for analysis-by-synthesis!



Proposal: Top-down feedback to V1 is weaker or
absent in peripheral vision for analysis-by-synthesis!

A central disk (non-zero disparity)
and a surrounding ring (zero disparity)

Testing it in depth perception
Zhaoping & Ackermann, 2018

A V1 neuron’s response to disparity
in random dot stereograms
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Humans cannot see depth in such
stereograms in central vision

Doi et al 2011



Proposal: Top-down feedback to V1 is weaker or Testing it in depth perception
absent in peripheral vision for analysis-by-synthesis! Zhaoping & Ackermann, 2018
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Proposal: Top-down feedback to V1 is weaker or Testing it in depth perception
absent in peripheral vision for analysis-by-synthesis! Zhaoping & Ackermann, 2018

A central disk (non-zero disparity)
and a surrounding ring (zero disparity)

2> reversed depth percept
Dots for the

central disk
correlated
If peripheral vision
has no feedback
Dots for the
central disk

Anti-correlated V1 feeds forward reverse

depth to higher brain areas!




Proposal: Top-down feedback to V1 is weaker or
absent in peripheral vision for analysis-by-synthesis!

Testing it in depth perception
Zhaoping & Ackermann, 2018

A central disk (non-zero disparity)
and a surrounding ring (zero disparity)
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