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Omics and beyond

• The state of the cancer “ome”

• Developing a molecular basis for therapeutic 

response

• Beyond genomics – understanding the micro-

and nanoenvironments
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Goals in cancer research

• Normal cells have established 

regulatory systems to control 

behavior (grow, die, move, 

secrete a protein, etc.)

• Cancers arise because of 

genetic damage

• Our goal in cancer treatment is 

to find the abnormalities and 

develop therapies to correct the 

defect



Investments in genome science have stimulated development of 

a wealth of “reductionist” tools to catalog omic components

Massively parallel 

DNA 

Microarrays

Microfluidics and PCR

LC/mass spec



Plummeting costs and technological advances make 

clinical applications increasingly practical
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• Microgram to nanogram quantities of 

nucleic acids for copy number, mutation 

and promoter methylation

• Formalin fixed paraffin embedded 

capability

• Genome wide analysis ~$1500/sample

• Real time (~1 hour), point of care 

diagnostics

Nucleic acid sequencing 



International cancer genomics efforts are cataloging 

important genome aberrations in major tumor types

Recurrent aberrations 

will be defined for major 

tumor types in 3 -5 years

Copy number, mutations,  

structural changes, 

expression, splicing, 

promoter methylation, 

miRNAs, protein levels

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.
Object name is nihms68048f5.jpg [Object name is nihms68048f5.jpg]&p=PMC3&id=2671642_nihms68048f5.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.
Object name is nihms68048f5.jpg [Object name is nihms68048f5.jpg]&p=PMC3&id=2671642_nihms68048f5.jpg


Multiple data types

• Clinical diagnosis

• Treatment history

• Histologic diagnosis

• Pathologic report/images

• Tissue anatomic site

• Surgical history

• Gene expression/RNA 

sequence

• Chromosomal copy 

number

• Loss of heterozygosity

• Methylation patterns

• miRNA expression

• DNA sequence

• RPPA (protein)

• Subset for Mass Spec

TCGA: A comprehensive approach to 

aberrant pathway definition

25 forms of cancer

glioblastoma multiforme

(brain)

squamous carcinoma

(lung)

serous

cystadenocarcinoma

(ovarian)

Etc. Etc. Etc.

Biospecimen Core

Resource with more 

than 150 Tissue Source 

Sites

6 Cancer Genomic

Characterization 

Centers

3 Genome

Sequencing

Centers

7 Genome Data 

Analysis Centers

Data Coordinating 

Center

Kenna Shaw for the TCGA



State of the cancer genome

• Multiple genomic mechanisms 

deregulate genes that 

contribute to cancer 

pathophysiology

• Some aberrations occur earlier 

than others and can be ordered 

using information from one 

sample

• Recurrent aberration patterns 

define breast cancer subtypes 

that differ in outcome and 

therapeutic response

Chin & Gray, Nature 2010
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Genomic aberrations deregulate cellular regulatory 

systems

Cancer is caused by abnormalities that alter 

these circuits to change cell growth, death, 

station keeping and function



Therapeutic approaches either attempt to restore proper 

regulation or inhibit growth of deregulated cells

>$100 Billion in 

drug development



Modeling the decision tree – panels of cell lines

that capture the important aberration combinations
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Our goal is to include multiple cell lines in the 

panel that model each important decision state

Breast cancer cell lines



This works only to the extent that the cell lines 

capture the genomic events that determine 

response in tumors



toggle on/off 

RefSeq 

genes

link to human 

genome 

browser
user sign in 

view in 

chromosome 

mode

select 

dataset to 

view

configure

genesets

configure

genomic 

signatures

view in 

gene 

mode

resize 

panels

position or 

gene 

search bar

SU2C project data

• User signon required

• Side by side with public-tier, TCGA, ISPY datasets

• New browser release Jan 23, 2012

The cancer genome browser
genome-cancer.ucsc.edu

Facilitates association between genotype and phenotype



Cancer Genome Browser 

PARADIGM activities Informatics consortiumStuart/Haussler et al

SU2C

Understanding target pathways 



• Tumors and cell 

lines show 

common pathway 

signatures

• Pathway activities 

show strong 

subtype specificity

TCGA tumors and breast cancer cell lines

Using PARADIGM to assess subtype specific pathway 
Activities for 1441 pathways

Heiser et al., PNAS 109:2724, 2012



Predictive markers are discovered by correlating 

the “ome” with quantitative response
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Breast cancer 

cell line 

collection

Molecular data:  9+ data types

Drug/siRNA 

reresponse
Response status

Molecular drug 

response signatures

• Tested >140 therapeutic 

compounds in 54 cell lines 

• Treat for 72 hours

• Test 9 drug doses: low to high

• 3 replicates

• GI50: Drug dose required to 

inhibit growth by 50%

Heiser et al., PNAS 109:2724, 2012



Machine learning approaches (random forests) 

identify quantitative predictive decision trees

AUC = 0.72

Anneleen 

Daemen

Obi 

Griffith

,



“Superpathways”– generating 

information on mechanisms of response

• Many small pathways are nice for 
understanding specific contexts but 
information is duplicated or 
incomplete when assessed 
independently

• Merge all small pathways using an 
exhaustive breadth-first search of 
the current database of pathways

Stuart, Goldstein, Benz, Ng, Haussler



This approach identified pathway subnetworks

associated with compound response

Histone deacetylase network

DNA repair network

Laura 

Heiser

We are now applying the siRNA knockdown to 

validate the predicted networks

Goal:  Predict molecular and phenotype response 

for each gene in the network and test via siRNA

knockdown

Compounds attacking validated subnetworks are 

candidate therapeutics

Heiser et al., PNAS 109:2724, 2012
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Validating “driver” pathways that affect specific 

cancer hallmarks 

Rantala, Boddapati, Muschler, Hu, Kwon, … 

~100 malignant or 

nonmalignant cells per 

array element

20,000 culture 

elements per array

Array elements contain 

siRNAs targeting 

pathways

Image based 

assessment of IHC 

defined responses



Imaging assays for cancer hallmarks

Ki-67

EdU

P53BP1 / gH2Ax

Active integrins

Fibronectin

Actin

Transcription

factors

Cleaved PARP

KRT8 / KRT14

Laminin assembly

RTKs

ATM/ p53 / Chk2

Rantala et al
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Genome aberration targeted therapies are not as 

durable as needed

28

Paclitaxel plus

lapatinib

Paclitaxel plus

placebo

Lapatinib

Understanding the micro- and nano-

environments of cancer



Development of strategies to target pathways 

deregulated by genome aberrations is a key goal

ERBB2

Gray, Spellman, 

Mills, Tomlin, 

Korn

Understanding the larger 

signaling enterprise



Initial treatment blunts the aberration-driven activation
30

ERBB2

lapatinib



Microenvironment signaling can bypass inhibitors
31

ERBB2

lapatinib
Activation of b1 integrin signaling 

reduces response to lapatinib

anti-b1 integrin

Are there other microenvironment signals that alter response?



Modeling the microenvironment 
Microenvironment microarrays
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Cancer and normal cells

Arrays of 

microenvironment 

proteins

Up to 20,000 per 

analysis

Korkola, LaBarge, Rantala



Predicting responses to cancer therapies

• Linking genes/pathways to therapeutic response

• Understanding the role of the microenvironment

• Visualizing the nanoenvironment – exploring the 

mechanics of signaling

33
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Activation of bypass pathways
34

ERBB2

lapatinib
Release of inhibitory cross-talk 

activates MAPK signaling

MEK inhibitor



Activation of bypass pathways
35

Combinatorial Rx becomes increasingly toxic unless 

targeting is very precise

How does all of this information get integrated?

We don’t know where or how it gets translated into 

action (proliferation, death, etc)



Goal – visualizing the signaling architecture
An approach to assessment of digital signal transport



Advances in imaging, chemistry and computational 

Analysis can allow these structures to be seen

Super resolution Conventional

1 mm



Fluorescence imaging at nanometer resolution
Super resolution fluorescence microscopy to the rescue

confocal STORM

1 mm

• The average X, Y location of a fluorescent molecule 

can be determined with few nanometer accuracy

• The locations of two closely spaced fluorescent 

molecules can be mapped with this precision as long 

as only one is on at a time

• Super resolution images are built up over time by 

switching on a few dye molecules, recording their 

positions, switching them off and doing a few more

Better imaging through chemistry

Super resolution imaging concept



Identifying signal action centers
Localization of signaling structures defined using FM 

on cellular action centers defined using EM

Model Space |M| = O ( |Targets| x |Structures| )

ERK/MAPK

MEK

RAF

KSR

Targets Structures

Cell Membrane

Cytosol

Nuclear Membrane

Nucleus

Golgi Body

Endoplasmic Reticulum

E.g.,  State Value ( ERK/MAPK, Golgi Body) = 5

Lysosomes



Modeling Paradigm: Encoding the State

Space

40

Model Space |M| = O ( |Targets| x |Structures| )

ERK/MAPK

MEK

RAF

KSR

Targets Structures

Cell Membrane

Cytosol

Nuclear Membrane

Nucleus

Golgi Body

Endoplasmic Reticulum

E.g.,  State Value ( ERK/MAPK, Golgi Body) = 5

Lysosomes



Cancer genomics and imaging

Aberration catalog will soon be completed for most 

major cancer types

High throughput, high content imaging strategies can 

define the impact of microenvironments on response

Imaging the micro- and nano-environments will 

facilitate development of more robust and precisely 

targeted therapies



Research pursued under the auspices of the 

OHSU Center for Spatial Systems Biomedicine

Integrating engineering, imaging, biology, chemistry and 

computer science to advance multiscale imaging science



Omics and beyond
The collaborative village

Oregon Health and Science University
Center for Spatial Systems Biomedicine

LBNL

UCB

UCSFUCSC

MDACC
OHSU

SPORE, TCGA, DOD,  PSOC, CPTAC, ICBP, I SPY

Lawrence Berkeley National Laboratory
University of California San Francisco

LLNL

Advocates



Colleagues

Genome  biology
Paul Spellman (OHSU)
Nick Wang (OHSU)
TCGA enterprise

Microenvironment
Juha Rantala (OHSU)
Jim Korkola (OHSU)
Sunjong Kwon (OHSU)
Mark LaBarge (LBNL)
Chun Han Lin (UCB)
Matt Francis (UCB)
Mina Bissell (LBNL)

Nanoenvironment
Xiaolin Nan (LBNL)
Steven Chu (DOE)
Frank McCormick (UCSF)
Steven Jacques (OHSU)
Summer Gibbs-Strauss (OHSU)

NCI Center for Cancer Systems Biology, TCGA, DOD, Bay Area Breast Cancer SPORE, 

Atwater foundation, GSK, Roche, Millenium, Pfizer, Progen, Cytokinetics, Cell Biosciences, 

SU2C, FEI

Pathways
Laura Heiser (OHSU)

Obi Griffith (LBNL)

Anneleen Daemen (LBNL)

Catie Grosso (OHSU)

Myron Peto (OHSU)

David Haussler (UCSC)

Josh Stuart (UCSC)

Ted Goldstein (UCSC)

Steve Benz (UCSC)

Jing Zhu (UCSC)

Sam Ng (UCSC)

Peter Sorger (Harvard)

Terry Speed (UCB)

Claire Tomlin (UCB)

Imaging
Damir Sudar (LBNL)
Michele Nederlof (OHSU)
Izhak Shafran (OHSU)

Cell line system
Jim Korkola (OHSU)
Nick Wang (OHSU)
Darcie Babcock (OHSU)
Nora Bayani (LBNL)
Darcie Babcock (OHSU)
Zhi HU (OHSU)
Gordon Mills (MDACC)
Sara Sukumar (Johns Hopkins)
John Muschler (OHSU)
Ray Cho (UCSF)

Project management
Heidi Feiler (OHSU)
Kristiina Iljin (OHSU)


