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e GBM and invasion; in vitro experiments

* The invasive phenotype.
* |Invasion and the microenvironment.

 Remodeling the microenvironment.

e Recurrent tumors.
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Glioblastoma multiforme (GBM)

® Glioma affects glial cells in the brain,
probably astrocytes.

® 18,000 people/year in the US are diagnosed
with primary brain tumors.

® 9,000 have glioblastoma multiforme (GBM),
the most malignant form.

® After diagnosis:
® 50% of GBM patients die within 1 year.
® 98% of GBM patients die within 5 years.

® No significant advances in the last 30 years.
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GBM responds poorly to surgery

e This cancer is highly invasive; single cells leave the tumor surface

and invade the surrounding tissue.
* Many recurrent tumors near to the primary after resection.
* Some recurrent tumors quite distant from the primary.

e Note that GBM is almost never metastatic, only invasive.

e Expanding resection to ‘catch’ the invasive cells always fails.
* Some areas of the brain cannot be removed.
* Even very extensive resection doesn’t work.
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GBM responds poorly to radiation and

e Blood-brain barrier blocks drug delivery.
* |nvasive cells proliferate slowly.

* Current best practice: median survival of
approximately 6 months if untreated. This rises
to 14 months with the current standard of
care, radiation plus temozolomide.
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3d Tumor Spheroid Assay

e Put a clump of cultured tumor cells
(a tumor spheriod) in a gel. (We use
matrigel or collagen-l).

eSpheroid grows.
eSingle cells invade.

e May be a reasonable model for
invasion in the brain.

T. S. Deisboeck et. al. (2001) Pattern of self-organization in tumour systems: complex
growth dynamics in a novel brain tumour spheroid model. Cell Prolif, 34, 115-134

A. M. Stein, T. Demuth, D. Mobley, M. Berens, and L. M. Sander, A Mathematical Model
of Glioblastoma Tumor Spheroid Invasion in a Three-Dimensional In Vitro Experiment,
Biophysical Journal, 92, 356 (2007).
KITP 2012 UNIVERSITY OF MICHIGAN 7




KITP 2012 UNIVERSITY OF MICHIGAN




New experiments in progress

 A. Marcus and collaborators have engineered inducible

glioma cells. We can turn on (and off) motilty.
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* |nvasive cells are phenotypically different from
proliferative ones.

— Grow vs. go: invasive cells proliferate far less than

cells in the primary tumor, and have high motility:

* A. Giese, M. A. Loo, N. Tran, D. Haskett, S. W. Coons, and M. E. Berens,
Dichotomy of astrocytoma migration and proliferation, International
Journal of Cancer, 67, 275 (1996).

— The nature of the signaling that leads to the switch
is not understood (hypoxia? pH?..)
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 Demuth et al: radial migration assay (i.e., let
cells migrate, choose from inside and outside.)

— ldentify a ‘stationary’ signature and a ‘migration’ signature in profiles.

— Gene that is most commonly upregulated in the migration signature is
CTGF (connective tissue growth factor) which plays a role in migration
and response to wounding in many cellular contexts.

 Demuth et al. 2008 Glioma cells on the run the migratory
transcriptome of 10 human glioma cell lines BMC Genomics 9 54

* Godlewski, et al. identify microRNA-451
downregulated in migratory cells.

* J. Godlewski, et al., microRNA-451: A conditional switch controlling
glioma cell proliferation and migration, Cell Cycle, 9, 2742 (2010).
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 What happens when a cell on the surface of a
tumor switches to invasive phenotype?

— Signaling from the stroma determines the mode of
invasion.

— Cells in the tumor remodel the stroma which facilitates
invasion.

e We will focus on mechanical effects in the
microenvironment.

— We argue that a major phenomenon is alignment of
the ECM which is made of a strain-stiffening
biopolymers.

— There is evidence for very similar effects in invasion in
breast cancer.
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ECM affects cell motility

Motility on a surface

03:40:57 09:15:00

Glass Soft gel

T. Ulrich, E. De Juan Pardo, and S. Kumar, The Mechanical Rigidity of the
Extracellular Matrix Regulates the Structure, Motility, and Proliferation of
Glioma Cells, Cancer research, 69, 4167 (2009).
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In vitro invasion: cell tracking
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A. M. Stein, D. A. Vader, L. M. Sander, and D. A. Weitz. Mathematical Modeling of

Biological Systems, volume 1. Birkhauser, 2006.
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3d cell paths from confocal

microscopy

N.B. These are not random walks.
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Cells are Biased Random Walkers

Model as a O-U process. Bias
consistent with zero for
azimuthal component.
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Cells are Biased Random Walkers

Model as a O-U process. Bias
consistent with zero for
azimuthal component.
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Cell population dynamics
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Smoluchowski equation
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A. M. Stein, T. Demuth, D. Mobley, M. E. Berens, and
L. M. Sander. A mathematical model of glioblastoma
tumor spheroid invasion in a three-dimensional in'vitro’

18

aexneriment Rionhve I Q2:-35A_3A5 2007

18



Smoluchowski equation

ou 5

Diffusion

sInvasive cell motion has a
random component and

A. M. Stein, T. Demuth, D. Mobley, M. E. Berens, and
L. M. Sander. A mathematical model of glioblastoma
tumor spheroid invasion in a three-dimensional in'vitro’
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Smoluchowski equation

- = — vV.u +
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Diffusion Directed Motility

sInvasive cell motion has a
random component and a
directed component

A. M. Stein, T. Demuth, D. Mobley, M. E. Berens, and
L. M. Sander. A mathematical model of glioblastoma

tumor spheroid invasion in a three-dimensional in'vitro’ 18
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Smoluchowski equation

- szu — vV, u + 85(7’ = Rcore(t)) '

Diffusion Directed Motility Cell Shedding

sInvasive cell motion has a
random component and a
directed component

«Core radius expands at a
“slow”, constant velocity.

core surface

A. M. Stein, T. Demuth, D. Mobley, M. E. Berens, and
L. M. Sander. A mathematical model of glioblastoma

tumor spheroid invasion in a three-dimensional in'vitro’
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Smoluchowski equation
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at Diffusion Directed Motility Cell Shedding Proliferation
sInvasive cell motion has a

random component and a
directed component

«Core radius expands at a
“slow”, constant velocity.

elnvasive cells are shed from the
core surface

sInvasive cells proliferate

A. M. Stein, T. Demuth, D. Mobley, M. E. Berens, and
L. M. Sander. A mathematical model of glioblastoma

tumor spheroid invasion in a three-dimensional in'Vitro’ 18
aexneriment Rionhve I Q2:-35A_3A5 2007

18




Fit Model to Different Cells

More
malignant
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Fit Model to Different Cells

More
malignant
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Results of experiments

* Cell-tracking and population tracking show:

— Cell shedding from spheroid.

e Rate presumably depends on competition between
cell-cell adhesion and cell-matrix adhesion.

— Random motion (“diffusion”).

— Directed motion away from spheroid at about
10um/hr.

UNIVERSITY OF MICHIGAN
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Cell motility: basic facts

e Cells attach to a
substrate or matrix via a
transmembrane protein.

— In mammalian cells
adhesion is via integrins.

— Attachment to ECM at
one end, actin network
at the other.

 Cell contraction followed
by detachment at the
back leads to motion.

UNIVERSITY OF MICHIGAN
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Cells affect the matrix

» Degradation: Cells produce enzymes
that degrade the matrix (particularly
important for fibrin).

* Production: Cells can produce their own
collagen.

» Deformation: Cells deform matrix by
exerting forces.

— compaction
— alignment

UNIVERSITY OF MICHIGAN
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Cells Align Matrix
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D. Vader, A. Kabla, D. Weitz,
and L. Mahadevan, Strain-

|l induced alignment in collagen
gels, PloS one, 4 (2009).

UNIVERSITY OF MICHIGAN

23



e Demuth & Berens
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Single glioma cell in collagen

U min:.
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Force measurements
e Seed collagen with fluorescent beads, measure

displacements.

— V. Gordon, et al. Measuring the mechanical stress induced by an expanding
multicellular tumor system: a case study, Experimental cell research, 289, 58

(2003).
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— Invading cell tip pulls nearby gel inward with a force in the range 10 =100 nN
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Modeling cell interactions with ECM

* |Interactions of cells with the matrix in which
they move.

— Matrix is a tangled net of polymers -- a gel.

— Cells can deform the gel, and the presence of
the gel can impede or guide cell motion.

* We try to understand these effects by
investigating the mechanics of the gel.

UNIVERSITY OF MICHIGAN
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Alignment and cell motion

* Near a spheroid there may be massive
alignment of fibers.

 We think that the aligned regions make
“highways” for cell motion.

 We need to understand the collagen medium
in which the cells move.

UNIVERSITY OF MICHIGAN
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Collagen remodeling

 Remodeling and alignment occur because cells pull collagen
together. We need to understand collagen mechanics.

* Collagen and most biopolymers, have non-linear elasticity, and
fibers align at large strains; this leads to strain-stiffening.
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* Since alignment only occurs at large strain, it will
be confined to a region very near the cell.

 We argue that this ‘sphere of influence’ has been
indirectly observed, and we compute its size using
a model for the non-linear elasticity of collagen.

e This is very unlike linear elasticity where all effects
of point deformations lead to power laws with no
natural scale.

— For example, for an elastic medium with a spherical
inclusion that contracts, o, ~ 1/ r3.

UNIVERSITY OF MICHIGAN

30



Evidence for confined alignment
* Experiments on tumor spheroids in a 3d
collagen assay.

— Here it is glioma cells that pull on the medium, and
they are in a large lump about 250u across.
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Fibroblast-populated collagen gels

* |n a popular method, the fibroblast-populated collagen
microsphere assay, the compaction of collagen gels is

studied.

e Evans & Barocas, 2009 studied mechanics of the gel:

— Propose a model in which ‘the gel compaction is not homogeneous but consists
instead of extreme densification near the cells in an otherwise unchanged matrix.’

— Good fit to mechanics of the microsphere from spherical inclusions around each

fibroblast of about 100-150 u diameter.

(a)

= I
= [

Fig. 6 Schematic of former and proposed view of cell-driven
compaction. (8) Old view. Cells drive homogeneous compac-
tion, increasing the density of the gel throughout. (b) Proposed
view. Cells create small, very dense inclusions in an otherwise

largely unaltered gel.

(b)

M. C. Evans and V. H.
Barocas, Journal Of
Biomechanical Engineering

131 (10), 101014 (2009).

UNIVERSITY OF MICHIGAN

32



Estimate confinement radius

e Qutside of the confined region the medium is
linear, so we can use standard methods.

— Assume the aligned region is a sphere of radius R with
negative pressure, p.

— We take the displacement to be radial, a function of r
alone.

— Simple calculation: o, = pR3/r3, |
| Failure Strain
096 = O(I)(I) = _pR3/2r3 i—- FaimeSuess/-,_,—-.

o

& S 80% FS

w &

g

N wa Ainear
’ 20% FS2~ Modulus
L e e

To Linear Failure
— J

0 01|02 o3 04 05 o0& 07
Strain (mm/mm)

Onset of non-
linearity

UNIVERSITY OF MICHIGAN 33

33




 Determine p: Assume that the cell pulls on rigid
aligned fibers so that the total force applied by the
cell, f_, is transferred to the medium at radius R.

— Glioma are known to pull with about 10 nN (A bit more
for fibroblast).
— This gives, e.g., o, = -f R/4mr3.

 Determine R: the non-linear regime sets in at
stresses of order 1 Pa. So 1 Pa =f_/4nR3.

e This gives R~ 30u, within a factor of 2 or 3 of the
observation.

UNIVERSITY OF MICHIGAN
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Collagen-| Gel
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Collagen Gel Physics

Collagen is viscoelastic up to 10-15% strains.

Significant strain stiffening and plastic deformation occur at
larger strains.

Many other biological gel networks have these properties,
e.g. actin.

A micromechanical model is needed to understand strain
stiffening and plasticity.

UNIVERSITY OF MICHIGAN
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Actual Networks

A. M. Stein, D. A. Vader, L.
M. Jawerth, D. A. Weitz,
and L. M. Sander, An
algorithm for extracting the
network geometry of three-
dimensional collagen gels,

Journal of microscopy, 232,
463 (2008).
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.

»
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.
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Mechanical Modeling of Networks

Stein, A. M., Vader, D. A., Weitz, D., and Sander, L. (2010). The micromechanics of three-
dimensional collagen-I gels. Complexity 16, 22-28.
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Results of modeling
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f) Stress-Strain response
« Model <

2

Iy
(=)

Shear Stress (Pa)
°O
.
’t; g
o

%

10~ 107 10’
Engineering Shear Strain

KITP 2012 MJNIVERSITY OF MICHIGAN

40

40




e Use a realistic network extracted from confocal
MmICroscopy.

 Model a ‘cell’ as a center with ~5-10 filopods
which attach to the network at random places.

 Dynamics: shorten the filopods by 15%, figure
out the deformation of the fibers.

UNIVERSITY OF MICHIGAN

41



Model fibroblast in network
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Range of deformation

Displacement v.s. radius, cell contraction ratio =85%.
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* We computed displacement of nodes and
stored elastic energy as a function of radius.

* We find a rapid fall off of all quantities at
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Alignment near the tumor spheroid

s ¥ s 28 a3
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Unstressed network

Stressed by plane of cells
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Model cells & network
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Detachment versus Alignment

Breaking Time for 200 Trials —— Longitudinal Histogram —— Longitudinal
—— Transverse Transverse
140
40 -
120
30
100 ~
z 20
%0 5
g
60
40 v v v 0 v - v v ' T - —
0 S0 100 150 200 &0 70 a0 90 100 110 120 130
Trial Breaking Time
More rapid detachment, faster cell motion, along fibers compared to across
them.
This is the beginning of a mechanical model for contact guidance.
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Alignment in vivo, breast cancer

* A group looked at alignment of the stroma

near breast tumors.

* P.P. Provenzano, D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely,
Contact guidance mediated three-dimensional cell migration is regulated by
Rho/ROCK-dependent matrix reorganization, Biophys J, 95, 5374 (2008).

* They propose alignment (measured by second harmonic
generation on biopsy specimens) as a prognostic signature

for invasiveness.

* M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P.
Provenzano, A. Friedl, and P. J. Keely, Aligned Collagen Is a Prognostic

Signature for Survival in Human Breast Carcinoma, The American Journal of
Pathology, 178, 1221 (2011).

UNIVERSITY OF MICHIGAN
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Breast cancer experiment
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e Spontaneous clustering of glioma cells as a trigger
for recurrent tumor formation.

— With Evgeniy Khain, Michael Khasin, in prep.
* Proposal for the formation of multifocal

glioblastoma tumors: clustering of invasive cells

outside of a primary tumor could make a favorable
microenvironment for a recurrent tumor.

 The spontaneous clustering is treated using the

methods of large deviations theory from statistical
physics.

UNIVERSITY OF MICHIGAN

49



* |[n order to form new (recurrent) tumors,
invasive cells need to stop migrating, start
proliferating again.

 We propose that cell signaling by neighbors via
adhesive contacts, the production of growth

factors, or the presence of matrix proteins
produced by neighbors could cause the switch.

* Indirect evidence via an in vitro experiment.

UNIVERSITY OF MICHIGAN

50



Cell clustering
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Clustering and cadherins

* Spontaneous
formation of clusters
depends on adhesion
exceeding a certain
critical level.

 However, cell lines
(e.g. U87wt) do not
exceed that level, but

U87 wt with N-cadherins
still form recurrent upregulated. (M. Chopp, et al.)

tumors.

KITP 2012 UNIVERSITY OF MICHIGAN
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e Square two-dimensional lattice; each lattice site

can

oe empty or occupied by one cell.

e A cellis picked at random, and one of the four
neighboring sites is also picked at random.

— If this site is empty, the cell can proliferate there (a

new cell is born there) with probability a, or migrate
there.

— Prigr = (1 -a)(1-qg)n, where0<qg<1istheadhesion
parameter, and n is the number of nearest neighbors.

— We can show that for g<0.82, clusters are not stable.
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Clustering via fluctuations

« Divide lattice into squares, look for occupancies, m..

* |f number in a square exceeds a value, say 20, this is

a fluctuation arge enOugh to start a new tumor.
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Discrete lattice model for cell migration. Lattice sites can be occupied
by one cell or be empty. The cell dynamics is described in the text. The average cell
density is small, but rare, large density fluctuations can lead to cluster formation, as in
the lower right square. We assume that some cells in that cluster become proliferative.
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Simulations
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Numerical results for the density distribution function, P(m). Here m is a

number of cells in a 8 x 8 square for average area fraction 7 = 0.1 (no proliferation).
Blue circles, ¢ = 0, red squares, nonzero (but subcritical) adhesion, ¢ = 0.6. Black
dotted line, Poisson distribution. Inset: tail region: the probability of large cluster
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formation increases exponentially with the adhesion parameter q.
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Master equation

 Master equation for P(m):
P{_m) = Z Wim—rr)Plm—r)—W(im;r)P(m

re<1

AMlm) = W{(m:1)rate to add a cell,
G(m) = W(m:~1)rate to lose a cell.

* Assume different regions independent.

 Get A, B by an ‘equation-free’ approach.
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Estimate rates
* Define reduced rate of migrating into the

square,A& | -
/\{..Hll) == (l L)) /\“

— The average area fraction inside the square, m/L? is
equal to the probability of having an empty site on
the boundary, so that a particle have a space to

move in.
e Similarly, | e
Glm) = (’I — P) 90
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Measure rates

* Sample over many configurations, measure rate in, rate
out.

* Note that this is much easier than doing a full
simulation.

* |tis not clear that this will work, i.e., m may not be the
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Scaled rate of migration out of square 5, as a function of number of particles
in the square for L = 5 and zero proliferation. The black dashed line, zero adhesion,

g = (), blue circles. ¢ = 0.3, red squares, ¢ = (1.6.
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Solution of master equation

We get the stationary probability distribution from detailed
balance:

Am = 1)P(m — 1) = B(m)P(m) X, P(m)=1.

Somewhat surprisingly, the method works very well.
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Density distribution function P(m), where m is a number of cells in a
square L by L (L = 5) for the average area fraction v = 0.2 and zero proliferation.
Blue circles correspond to nonzero (but subcritical) adhesion, g = 0.6: red dashed line

1s computed from Eq. (2) using the measured rates for the same adhesion, g = 0.6.
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e See if this is reasonable:

— For average density 0.1, g=0.6, P ~ 10°°.
— Need to wait approximately
T =106 x t ;=5 x 10° minutes,

to get a cluster of 20 particles in a square 100 um
on a side (i.e. 5 cells wide).

— In a two-dimensional system of size 3 x 3 mm we
will need to wait

T = 5x10%/900 minutes ~ 4 days.
— But q=0.3, T~ 38 months
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 We need to know lots of things from
experiment to make this into more than
speculation:

— What is the minimum size (if there is one) for a
recurrent tumor to flourish?

— What are the signals that lead migratory cells to
start proliferating again?

— What are the effects of an inhomogeneous
environment?
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 We have argued that invasion by tumor cells is
accompanied by remodeling, in particular,
alignment, of the ECM

— Cells align the ECM
— Aligned ECM provides ‘highways’ for cell motion.

e Alignment of a biopolymer has an unexpected
feature, stress confinement.

 We give a speculation about the formation of
recurrent tumors by spontaneous clustering of
invading cells.
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