# "Just Five Numbers" Critical Parameters That Shape Human Cancer 

Darryl Shibata

Department of Pathology
Keck School of Medicine

## Just Six Numbers by Martin Rees (1999)

Idea That Certain "Values" Allow For "Life"

- N : electrical forces that hold atoms together versus gravity $\left(10^{36}\right)$
- $\mathcal{E}$ : forces between atomic nuclei (0.007)
- $\Omega$ : amount of material in the universe
- $\lambda$ : dark energy
- Q: ratio of gravity versus total energy $\left(10^{-5}\right)$
- D: number of spatial dimensions (3)


## Idea of Feasibility

- Just Six Numbers: If these numbers were different, the universe would either collapse or not coalesce
- For Cancer: Are their critical values that allow for cancer? (a "mechanism" that accounts for human cancer)
- Problem that with many cancer "mechanisms" either everyone gets cancer or no one gets cancer (but no one calculates if this is a problem)


## Physics Envy

- Modern Physics Connects the Largest (Cosmology) With the Smallest (Baryons and so on) With a "Standard" Model
- Possible to use a similar approach to cancer?



## Largest and Smallest Features of Human Cancer

- Largest Feature: Cancer Epidemiology (outcome of trillions of stem cells)
- Smallest Feature: Single Stem Cell (behavior of single stem cells)



## Cancer Epidemiology

- Essentially Giant Multi- mirror Telescope
- Cancer Registries Record All Cancers Within Set Geographic Areas
- Probably Capture >90\% of all Cancers in the USA



FIGURE 4 Annual Age-adjusted Cancer Death Rates* Among Males for Selected Cancer Types, US, 1930 to 2001.
*Rates are age-adjusted to the 2000 US standard population.
Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancers of the lung and bronchus, colon and rectum, and liver are affected by these changes.
Source: US Mortality Public Use Data Tapes, 1960 to 2001, US Mortality Volumes, 1930 to 1959, National Center for Health Statistics, Centers for Disease Control and Prevention.

## Cancer Incidence Increases With Age



## Armitage-Doll Frequency/Age Log/Log Plots (1955)



## Shape of Age-Incidence Curve:

 Number of Rate-limiting Mutations The greater the number of mutations required for transformation, the older the age of onset$$
\begin{aligned}
& I(t)=a t^{(k-1)}
\end{aligned}
$$

$(I(t)=$ cancer incidence at time " t "

Age

## Example: Colorectal Cancer



## How Cancer Biologist Do Math (Or What "Causes" Cancer)

- Odds of A "Mutation" In A Gene Is About 1 Mutation Per Million Divisions ( $10^{-6}$ )
- If You Need Five Mutations, Then The "Odds" of Cancer Is:

$$
\left(10^{-6}\right)^{5}=10^{-30}
$$

Underlying "Assumption" Is That Getting Cancer is "Impossible" Unless "Something" Goes Wrong (Hence the search for "causes" of cancer)

## How Biologists Do "Models"

## Adenoma-Cancer Sequence (VogeIstein) Paradigm For Colorectal Cancer



## Alternative Hypothesis

Cancer Is A Natural Outcome of Living (Occurs By "Chance")
Possible To Calculate The Odds of Human Cancer With Just Five Numbers!

1. Number of Stem Cells In A Crypt (eight)
2. Number of Crypts Per Colon (15 million)
3. Stem Cell Division Rate (once every 4 days)
4. Mutation Rate ( $3 \times 10^{-6}$ per division)
5. Number of Required Cancer Mutations (six)

~15 million crypts/colon
5\% lifetime risk of CA by 100 years of age

15 million crypts $\times 100$ individuals $=1.5 \times 10^{9}$ total crypts

## 5 "crypts" lead to cancer

Transformation Efficiency $\sim 3 \times 10^{-9}$ per Crypt After 100 Years

## Cancer Model

$k$ rate-limiting pathway mutations accumulate in stem cells


# Cancer Equation <br> $P$ (mutation) $=(\mathrm{u})$ <br> $P$ (no mutation) $=(1-u)$ 

$P$ (no mutation after d divisions) $=(1-u)^{d}$
$P$ (mutation after d divisions) $=1-(1-u)^{d}$
$P$ (mutation in all $k$ genes after d divisions) $=\left(1-(1-u)^{d}\right)^{k}$
$P$ (no mutation in all $k$ genes after d divisions) $=1-\left(1-(1-u)^{d}\right)^{k}$
$P$ (no mutation in all $k$ genes after d divisions in a colon) $\quad=\left(1-\left(1-(1-u)^{d}\right)^{\mathrm{k}}\right)^{\mathrm{Nm}}$
$P$ (mutation in all $k$ genes after d divisions in a colon) $\quad=1-\left(1-\left(1-(1-u)^{d}\right)^{k}\right)^{\mathrm{Nm}}$

# Does Normal Cell Division Cause Cancer? 

$p=1-\left(1-\left(1-(1-u)^{d}\right)^{k}\right)^{N m}$

| Parameter | Description | Colorectal Cancer With Pathway <br> Gene Targets |
| :---: | :---: | :---: |
| $k$ | rate-limiting stages | 6 pathway mutations |
| $m$ | number of crypts | $15,000,000$ |
| $n$ | stem cells per crypt | 8 |
| $u$ | target mutation rate | $3 \times 10^{-6}$ per pathway per division |
| $d$ | divisions since birth | once every four days |
| $p$ | probability of cancer | - |

$p=1-\left(1-\left(1-(1-u)^{d}\right)^{k}\right)^{N m}$


## Major Difference: The "Start" (at conception vrs later in life)



Nuclear $\beta$-catenin levels and chromosomal instabilty

Nature Reviews | Cancer


Adenoma-Cancer Sequence (after 50 years of age)

# Evidence For Cancer <br> Mechanisms Should Be Present Within Cancer Genomes (How Many Mutations in a Cancer?) 

Results From Cancer Genome Projects: Mutation Frequencies Are < 1 mutation per 100,000 bases

Relative Numbers of Genome Changes = Time

Molecular Clock Hypothesis:
Number of Genome Changes = Time Since Common Ancestor
"start" (common ancestor)


Present Day


Cancers Have Unique Sets of Mutations (only about 3 genes in common between any two cancers)

## Summary of Cancer Genomes

1) Mutation Frequencies Low: less than one mutation per 100,000 bases
2) Passenger Mutations >>> Driver Mutations
3) Each Cancer Genome is Unique


Cancers May Arise With Normal
Mutation And Division Rates

Mutation rate $=1 \times 10^{-9}$ per
base per division

# Cancer Cell Genealogy: Simple Molecular Clock Analysis With Data 


zygote
~3 mutations per million bp
(\# mutations) $=$ MR X (\# divisions)
(3/million) $=10^{-9} \mathrm{X}$ (\# divisions)
(\# divisions) $=\sim 3,000$ divisions to a tumor cell or
$\sim 43$ divisions per year for a 70 year old
No need to evoke greatly elevated mutation or division rates

## Random Replication Errors Could Account For Many Cancer Mutations


chance \& contingency \& passenger mutations

- Colorectal cancer 1
- Colorectal cancer 2
- Both



## Just Five Numbers

1. Number of Stem Cells In A Crypt (eight)
2. Number of Crypts Per Colon ( 15 million)
3. Stem Cell Division Rate (once every 4 days)
4. Mutation Rate ( $3 \times 10^{-6}$ per division)
5. Number of Required Cancer Mutations (six)


## Some Implications.............

## 




## Taller Individuals Get More Cancer




FIGURE 4 Annual Age-adjusted Cancer Death Rates* Among Males for Selected Cancer Types, US, 1930 to 2001.
*Rates are age-adjusted to the 2000 US standard population.
Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancers of the lung and bronchus, colon and rectum, and liver are affected by these changes.
Source: US Mortality Public Use Data Tapes, 1960 to 2001, US Mortality Volumes, 1930 to 1959, National Center for Health Statistics, Centers for Disease Control and Prevention.

$$
p=1-\left(1-\left(1-(1-u)^{d}\right)^{k}\right)^{N m}
$$

Stem Cell Number (n): Hard To Define!!!!!

## Why: Uncertainty Principle



## Human Colon Crypts: Mitotic With Constant Cell Replacement

1 crypt $=2,000$ cells All cells but stem cells die in a week
die in 1 week


## multiple stem cells

## Stem Cells: Two Models

1) Immortal Stem Cell Lineages (Intrinsic)
2) Stem Cell Niches (Two Components)
--- Epithelial Stem Cells
--- Surrounding Stroma (Extrinsic Signals)

## Stroma Niche Signals

 Wnt Pathway?TGFRII Pathway?
COX2 Pathway?
Cells That Leave A Niche Are No Longer Stem Cells

Types of Cell Division: (Always Binary)


Differentiated Cell
Asymmetric Replacement Stem Cell


Symmetric Expansion

Niche


Symmetric Extinction

# Immortal Vrs Niche Stem Cell Lineages 

## Immortal: Asymmetric Divisions Only



Niche: Asymmetric And Symmetric Divisions


# Immortal Vrs Niche Stem Cell Lineages 

Immortal: Asymmetric Divisions Only


Niche: Asymmetric And Symmetric Divisions


Appears All Mammalian Stem Cells Are Maintained By Niches (Stem Cell Clonal Evolution)

## Niche Stem Cells

## A Niche Has Two Parts: --- Mesenchymal --- Epithelial "Stem Cells"



## Niche Stem Cells

NICHE STEM CELLS

1) Extrinsically Defined
2) Will Differentiate Outside of Niche


## Stem Cell Niche Dynamics

Stem Cell Niche = Multiple Dividing Stem
Cells and Random Loss With Replacement

## Loss of All Lineages Except One = Stem Cell Clonal Evolution



Half of All Stem Cell Daughters Leave The Niche


## Human Colon Crypt Niche: Summary

25\% Non-stem

1) More Consistent With Niche Rather Than Immortal Stem Cells
2) Multiple Non-quiescence Stem Cells Per Crypt
3) Most Stem Cell Divisions Are Asymmetric (95\%)
4) Crypt Niche Succession Recurs About Every 8 Years


## So How Many Stem Cells At Risk For Cancer?

1. Only One Long Term Surviving Stem Cell Lineage Per Crypt
2. Multiple Potential Stem Cells Per Crypt $(N=64$ ?)
3. Potential To Change Niche Stem Cell Turnover
--- Bigger Niche (more potential stem cells)
--- Faster Stem Cell Division (almost never seen?)
--- Change Probability of Symmetric vrs Asymmetric Division Changes in Niche Stem Cell Survival May Be Critical For Cancer Prevention (Aspirin?) Because These Dynamics Are Occult To Normal Examinations


## Summary: Just Five Numbers

1. Cancer Biologists Are Math Challenged
2. May Be Possible To Link the Biggest Features of Cancer (Epidemiology) With the Smallest (Stem Cells)
3. Many Cancers May Simply Arise By "Chance"
4. Approaches From Physics May Greatly Advance Cancer Biology (Cosmology, Quantum Uncertainty)

$$
p=1-\left(1-\left(1-(1-u)^{d}\right)^{k}\right)^{N m}
$$

## Genomes Are "Historical" Documents <br> (almost perfect copies of copies)

Acknowledgements

- Yasushi Yatabe
- Kyoung-Mee Kim
- Jung Yeon Kim
- Aimee Kang
- Peter Calabrese
- Kim Siegmund
- Paul Marjoram
- Simon Tavare
current cell
(end)

