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- GRN methodology for developmental systems

- [Optional] The results, examples from the sea

urchin

- GRN methodology in cancer systems
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Nematostella vectensis

The starlet 

sea anemone

“Stella”

-Insights into basic

animal development

-Tractable
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Nematostella vectensis

The starlet 

sea anemone
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Coralscience.org

Orthogonal body axes and germ layers 

underly the bilaterian body plan
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“Radial” and “Simple” Animals
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The cnidarian body plan bears the 

“bilaterian”molecular signature

Wnt and TGFb pattern 1° / 2° axes

Canonical “mesoderm” genes expressed

Wnt’s and TGFb’s expressed along 1° / 2° axes

Cohort of genes driving mesoderm 

specification and EMT
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Cnidarians and Bilaterians are sister groups

CnidariaBilateriaPorifera

?
1st body axis

2nd body axis/
mesoderm
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Magie et al., 2007
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Combinations of

different transcription

factors

multiple “inputs” + 

multiple “outputs”

= network
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20,000-30,000 genes

2,000-3,000 “regulatory” genes

200-300 genes in control system

20-30 genes in spec. subcircuits

2-3 genes/interactions critical

Multi-scale problem

Channels/gradients - milliseconds

Signaling cascades - milliseconds 

to minutes

Transcription - minutes to hours
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Scale-integration

Which genes are relevant?

How are they functionally

related?

Which interactions drive

specific outcomes?

Transcriptome to Interactome

Interactome to Network

Network to Subcircuit
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Who regulates the regulators?
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Who regulates the regulators?

Interactome “reverse-engineering”:

- the statistical dependency of each gene with every other gene

- requires hundreds of replicates

- successful with human disease biology
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Who regulates the regulators?

Interactome “reverse-engineering”:

- the statistical dependency of each gene with every other gene

- requires hundreds of replicates

- successful with human disease biology

Carlo Cosentino

University of Magna Graecia,

Catanzaro, Italy
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Scale-integration II: perturbations

Which genes are relevant? Transcriptome to Interactome

How are they functionally related? Systematic perturbations

X
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Scale-integration II: perturbations

Even exhaustive perturbations fail to resolve common, 

functionally important network structures

X



© 2006 Marine Biological Laboratory www.mbl.edu

Scale-integration II: perturbations

Perturbation analysis failure

A

C
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Scale-integration II: perturbations

A

C

Perturbation analysis failure



© 2006 Marine Biological Laboratory www.mbl.edu

Scale-integration II: perturbations

Perturbation analysis failure
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Scale-integration II: perturbations

Even exhaustive perturbations fail to resolve common, 

functionally important network structures

X +
Complementary

data sets
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Genomic cis-regulatory 

elements

TF binding preferences
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Scale-integration II: perturbations

Even exhaustive perturbations fail to resolve common, 

functionally important network structures

X +
Complementary

data sets
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Scale-integration III: testing 

network switches

Which genes are relevant?

How are they functionally

related?

Which interactions drive

specific outcomes?

Transcriptome to Interactome

Interactome to Network

Network to Subcircuit
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Scale-integration approach

First-pass “reverse engineering” the interactome

RNA-seq HD expression analysis, perturbation settling

Interactome

Systematic perturbation analysis

Exhaustive pert-seq, complementary assays, merging diverse data sets

Network

Hypothesis testing, kinetic modeling

CRNT modeling, cis-regulatory validation, network reliability testing

Dynamic Network

Which genes are relevant?

How are they functionally

related?

Which interactions drive

specific outcomes?
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Scale-integration approach

Observation

Interactome

Hypothesis generation

Network

Hypothesis testing

Dynamic Network

Which genes are relevant?

How are they functionally

related?

Which interactions drive

specific outcomes?

High Sensitivity

(Low Specificity)

Increasing 

Specificity
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Cis-regulatory analysis

• BAC reporters capture genomic 

context

• Cis-reengineering tests subcircuit 

function within endogenous regulatory 

context
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Vegetal Dsh Vegetal wnt8

Ettensohn, et al. Wikramanayake, et al., Minokawa, et al.
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The “Torus Subcircuit”
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The “Torus Subcircuit”

Expansion by ligand diffusion

S

h

u

t
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Testing the Torus Subcircuit: ExoBlimp
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Testing the Torus Subcircuit: mutExoBlimp
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Test

Control
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Test

Control
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mutExoBlimp assay (I): Wnt8 BAC-GFP
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Wnt8 and Delta domains remain spatially aligned

Blue = Wnt8/Blimp1

Red = Delta

Gene regulatory network subcircuit controlling a 

dynamic spatial pattern of signaling in the sea

urchin  embryo

Smith and Davidson, PNAS, 105, 20089 (2008)
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hesC and delta expression domains are exclusive

Revilla-i-Domingo et al., 2007
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5´(A/C/T)(A/G)(G/T)NGAAAG(G/T)(A/G/T)-3´

cis-Regulatory analysis of hesC
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Revilla-i-Domingo et al., 2007; Oliveri et al., 2002, 2003
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Revilla-i-Domingo et al., 2007; Oliveri et al., 2002, 2003; Logan et al., 1998; Chuang et al., 1996

b-cat

Otx
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Reciprocal 
repression

to Veg2
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Revilla-i-Domingo et al., 2007; Oliveri et al., 2002, 2003; Logan et al., 1998; Chuang et al., 1996

b-cat

Otx
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24 h Pmar MASO:

shuts down

skeletogenic 

mesoderm

specification 

program

Control
MASO

Pmar
MASO
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24 h

Control
MASO

Pmar
MASO

Pmar MASO:

shuts down

skeletogenic 

mesoderm

specification 

program
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30 h 72 h

However: embryos recover from Pmar MASO by 30h!

Control
MASO

Pmar
MASO
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30 h 72 h

Control
MASO

Pmar
MASO

However: embryos recover from Pmar MASO by 30h!
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Does regulative recovery depend on repression of hesC by Blimp?
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Control

DBlimp
HesC
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HesC
DBlimp

DBlimp
HesC
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Two systems:

same maternal/early 

inputs

The older one is

able to compensate

for disruption of the 

newer one


