Twisted scroll waves: instabilities and a reduced model.

Blas ECHEBARRIA (Politècnica), Hervé HENRY (Polytechnique)
Vincent Hakim
Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris

Winfree et al., Chaos 6, 617 (1996);

U. Storb et al, PCCP 5, 2344 (2003).

A new degree of freedom in 3D : the twist

A. Pertsov et al Nature 345419 (1990); J. Phys.Chem. 1001975 (1996).

A twist induced instability : sproing

Henze, Lugosi and Winfree (1990).

- Helical deformation of the mean filament.
- Slow rotation of the center of rotation in a given plane.

A theoretical puzzle

Keener (1988): Equations for the slow motion of the core of a weakly curved (κ) and weakly twisted scroll wave in the normal plane ($\overrightarrow{\mathbf{N}}, \overrightarrow{\mathbf{B}}$), using averaging techniques,

$$
\begin{aligned}
& \overrightarrow{\mathbf{R}}_{\mathbf{t}} \cdot \overrightarrow{\mathbf{N}}=a_{1} \kappa+\cdots \\
& \overrightarrow{\mathbf{R}}_{\mathbf{t}} \cdot \overrightarrow{\mathbf{B}}=a_{2} \kappa+\cdots
\end{aligned}
$$

Biktashev, Holden, Zhang (1994): all the other coefficients coupling the core motion to the twist vanish by symmetry.

Different instabilities in different parameter regimes

- Extension of spiral instabilities:
- 3D induced meander (Aranson et Mitkov)
- Instabilities specific to scrolls:
- Negative line tension (Panfilov and Rudenko, Brazhnik et al, Biktashev et al,...)
- Twist-induced "sproing" (Winfree et al.)

The stability spectrum of a scroll
helps to obtain a clearer view of the different instabilities
(H. Henry + V H, PRL 2000, PRE 2002).

- The excitable medium model: two coupled equations (FitzHugh,1961; Nagumo et al.,1962),

$$
\begin{aligned}
\partial_{t} u & =\nabla^{2} u+f(u, v) / \epsilon \\
\partial_{t} v & =g(u, v)
\end{aligned}
$$

\diamond Specific choice here (Barkley, 1991):

$$
f(u, v)=u(1-u)[u-(v+b) / a], g(u, v)=u-v
$$

The linear stability analysis

- Steadily rotating uniformly twisted straight scrolls (determined by a Newton method):

$$
\begin{equation*}
\left(u_{0}\left(r, \theta-\omega t-\tau_{w} z\right), v_{0}\left(r, \theta-\omega t-\tau_{w} z\right)\right. \tag{1}
\end{equation*}
$$

- Computation of the linear stability spectrum

Translation invariance along the z-direction
\Rightarrow the eigenvalues appear in bands parameterized by the wavenumber k_{z} along the z-direction

Outcome of the linear stability computation

- Negative line tension instability \Rightarrow small k
(long-wavelength) instability of the translation bands; directly linked to spiral drift direction in an electric field.
- Twist-induced "sproing" \Rightarrow twist-induced finite k instability of the translation bands.
"Negative line tension instability" of large core non-meandering spiral

$$
a=.44, b=.01 \text { and } \epsilon=.025
$$

Eigenvalue bands: $(+)$ translation, the real part of $\sigma\left(k_{z}\right)$ is positive for small k_{z} : instability
$((\bullet)$ rotation, (o) meander)

Non-linear evolution: no restabilization

$$
a=.44, b=.01 \text { and } \epsilon=.025
$$

The instability existence is determined by the direction of spiral drift in an external field (A Karma +VH, PRE 1999; also H. Henry, PRE 2004).

$$
\sigma_{ \pm}\left(k_{z}\right)= \pm i \omega_{1}+\left(-\alpha_{\|} \pm i \alpha_{\perp}\right) k_{z}^{2}+O\left(k_{z}^{4}\right)
$$

$$
\partial_{t} u=\nabla^{2} u+f(u, v) / \epsilon-E . \nabla u, \quad v_{\mathrm{drift}}=\alpha_{\|} E+\alpha_{\perp} \omega_{1} \times E
$$

Twist-induced instability of the translation bands

$$
(a=.8, b=.01, \epsilon=.025)
$$

- Instability above a threshold twist.
- The translation modes $\left(\operatorname{Re}\left(\sigma\left(k_{z}\right)\right)=0\right)$ remain local extrema of $\operatorname{Re}\left(\sigma\left(k_{z}\right)\right)$ (consequence of 3D rotation invariance);
- The unstable modes are a finite k_{z} away from the translation modes.

Dynamics of twisted scrolls: difficulties for theoretical descriptions

- The instability appears above a finite threshold twist and a finite k_{z} away from the translation modes : it is invisible with small twist approaches (Keener; Biktashev et al).
- the twist-induced deformation of the translation modes can be analytically captured in the large core regime but untwisted scrolls are already unstable in this regime (negative line tension).

A ribbon model of twisted scroll waves

(a phenomenological extension of Keener's approach). B. Echebarria, H. Henry and VH, PRL (2006).

The scroll is reduced to

- the line of rotation centers $\overrightarrow{\mathbf{R}}(\sigma, t)$ with tangents $\overrightarrow{\mathbf{T}}(\sigma, t)$
- the ribbon vectors in the direction of the spiral tip $\overrightarrow{\mathbf{p}}(\sigma, \mathbf{t})$

$$
\text { with } \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{p}}=1, \overrightarrow{\mathbf{T}} \cdot \overrightarrow{\mathbf{p}}=0
$$

An important quantity: the local twist:

$$
\tau_{w}=\left(\overrightarrow{\mathbf{p}} \times \frac{\partial \overrightarrow{\mathbf{p}}}{\partial s}\right) \cdot \overrightarrow{\mathbf{T}}, \quad(s \text { curvilinear abscissa }) .
$$

Dynamics of the mean filament

The filament velocity in the normal plane is written as a gradient expansion

$$
\begin{aligned}
{\left[\overrightarrow{\mathbf{R}}_{t}\right]_{\perp}=} & a_{1} \overrightarrow{\mathbf{R}}_{s s}+a_{2} \overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{R}}_{s s}+\tau_{w}\left\{-d_{2}\left[\overrightarrow{\mathbf{R}}_{\text {sss }}\right]_{\perp}+d_{1} \overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{R}}_{s s s}\right\} \\
& -b_{1}\left[\overrightarrow{\mathbf{R}}_{\text {sssss }}\right]_{\perp}-b_{2} \overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{R}}_{s s s s}+\cdots \\
& \left.\left(\text { Notation: }\left[\overrightarrow{\mathbf{R}}_{t}\right]_{\perp} \equiv \overrightarrow{\mathbf{R}}_{t}-\left(\overrightarrow{\mathbf{R}}_{t}\right) \cdot \overrightarrow{\mathbf{T}}\right) \overrightarrow{\mathbf{T}}\right)
\end{aligned}
$$

First two terms: motion induced by curvature (\equiv spiral drift).
Other terms: beyond lowest order averaged equations (Keener), involve the coupling of filament motion with twist.

Kinematics of twist evolution

The twist characterizes the spatial rotation of $\overrightarrow{\mathbf{p}}(\sigma, t)$ around $\overrightarrow{\mathbf{T}}(\sigma, t)$. A deformation of the center line induces kinematic changes in the twist.

Global conservation

For a closed ribbon, the linking number L between the center line and the ribbon edge is conserved.

$$
\mathbf{L}=\mathbf{W r}+\int d s \tau_{\mathbf{w}}
$$

The "writhe" Wr only depends on $\overrightarrow{\mathbf{R}}(\sigma, t)$. Well-studied in DNA context (White, Fuller,...))

Here, the local form is more useful (Klapper and Tabor,...).

Kinematics of twist evolution

The local twist-writhe conversion (Klapper and Tabor,...):

- Spatial evolution of $\overrightarrow{\mathbf{p}}(\sigma, t)$ (along the filament):

$$
\frac{\partial \overrightarrow{\mathbf{p}}}{\partial \sigma}=\tau_{w} \frac{\partial s}{\partial \sigma} \overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{p}}-\frac{\partial \overrightarrow{\mathbf{T}}}{\partial \sigma} \cdot \overrightarrow{\mathbf{p}} \overrightarrow{\mathbf{T}}
$$

- Time evolution of $\overrightarrow{\mathbf{p}}(\sigma, t)$:

$$
\frac{\partial \overrightarrow{\mathbf{p}}}{\partial t}=\alpha \overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{p}}-\frac{\partial \overrightarrow{\mathbf{T}}}{\partial t} \cdot \overrightarrow{\mathbf{p}} \overrightarrow{\mathbf{T}}
$$

- Comparison of cross-derivatives \Rightarrow compatibility condition:

$$
\frac{\partial}{\partial t}\left(\tau_{w} \frac{\partial s}{\partial \sigma}\right)=\frac{\partial \alpha}{\partial \sigma}+\left(\frac{\partial \overrightarrow{\mathbf{T}}}{\partial \sigma} \times \frac{\partial \overrightarrow{\mathbf{T}}}{\partial t}\right) \cdot \overrightarrow{\mathbf{T}}
$$

A simple illustration of the kinematics

An helical deformation of a straight twisted filament with periodic boundary conditions. Center line : $\overrightarrow{\mathbf{R}}=(R(t) \cos (\tau z), R(t) \sin (\tau z), z)$

Local twist $\tau_{w}(t): \quad \frac{\partial}{\partial t}\left(\tau_{w} \frac{\partial s}{\partial \sigma}\right)=\frac{\partial \alpha}{\partial \sigma}+\left(\frac{\partial \overrightarrow{\mathbf{T}}}{\partial \sigma} \times \frac{\partial \overrightarrow{\mathbf{T}}}{\partial t}\right) \cdot \overrightarrow{\mathbf{T}} \Rightarrow$

$$
\frac{d}{d t}\left[\tau_{w} \sqrt{1+(R \tau)^{2}}\right]=-\frac{R \tau^{3}}{\left(1+(R \tau)^{2}\right)^{3 / 2}} \frac{d R}{d t}
$$

The final twist τ_{w} is determined by the initial twist $\tau_{w}^{(0)}$ and by the geometric parameters of the final deformation

$$
\tau_{w}=\frac{\tau_{w}^{(0)}}{\sqrt{1+(R \tau)^{2}}}-\frac{\tau}{\sqrt{1+(R \tau)^{2}}}\left[1-\frac{1}{\sqrt{1+(R \tau)^{2}}}\right]
$$

The initial twist is decreased both by the length increase and the writhe of the helical deformation.

Dynamics of twist evolution

$$
\frac{\partial}{\partial t}\left(\tau_{w} \frac{\partial s}{\partial \sigma}\right)=\frac{\partial \alpha}{\partial \sigma}+\left(\frac{\partial \overrightarrow{\mathbf{T}}}{\partial \sigma} \times \frac{\partial \overrightarrow{\mathbf{T}}}{\partial t}\right) \cdot \overrightarrow{\mathbf{T}}
$$

The rotation velocity α of $\overrightarrow{\mathbf{p}}$ around $\overrightarrow{\mathbf{T}}$ entirely characterizes the twist dynamics. When

$$
\alpha=\omega_{1}+c \tau_{w}^{2}+D \partial_{s} \tau_{w}+\left(\overrightarrow{\mathbf{T}} \cdot \partial_{t} \overrightarrow{\mathbf{R}}\right) \tau_{w}
$$

the twist dynamics is identical to that given by Keener's phase equation. Two effects : rotation velocity increases with τ_{w}^{2} and with the gradient of twist. The coefficients c, D are given as scalar products with the adjoint rotation mode (Keener) and have been computed as a by-product of the linear stability analysis.

Increase of scroll frequency with twist

$$
(a=0.8, b=0.01, \epsilon=0.025)
$$

First-order perturbation theory:

$$
\omega_{1}\left(\tau_{w}\right)=\omega_{1}(0)-\tau_{w}^{2} \frac{\left\langle\tilde{u}_{\phi}, \partial_{\phi \phi} u_{0}\right\rangle}{\left\langle\tilde{u}_{\phi}, \partial_{\phi} u_{0}\right\rangle+\left\langle\tilde{v}_{\phi}, \partial_{\phi} v_{0}\right\rangle}+O\left(\tau_{w}^{4}\right)
$$

(Full agreement with numerics : $\left.\omega_{1}\left(\tau_{w}\right)=\omega_{1}\left(\tau_{w}=0\right)+0.72 \tau_{w}^{2}\right)$

Sproing of a twisted scroll

Linear stability of a twisted straight ribbon:

$$
W_{t}=a W_{z z}+i d \tau_{w} W_{z z z}-b W_{z z z z}, W=x+i y
$$

and the dispersion relation $(W(t, z)=A \exp (\sigma t+i k z))$:

$$
\sigma=-a k^{2}+d \tau_{w} k^{3}-b k^{4}
$$

$a_{1}, b_{1}>0$, stable untwisted filament.
Threshold twist : $\tau_{w}^{(c)}=2 \sqrt{a_{1} b_{1} / d_{1}^{2}}$

Non linear evolution of a helix of pitch k :

$$
R_{t}=d_{1} k^{3}\left[\tau_{w}-\tau_{w}^{(c)}(k)\right] R
$$

the twist decreases as the radius increases:

$$
\left.\frac{d}{d t} \tau_{w}=\operatorname{Re}\left[\bar{W}_{z z}\left(\tau_{w}-i \partial_{s}\right) W_{t}\right)\right] \Rightarrow \tau_{w}(t)=\tau_{w}^{(0)}-\frac{1}{2}\left(\tau_{w}^{(0)}+k\right) k^{2} R^{2}
$$

Supercritical Hopf bifurcation;

$$
R_{t}=d_{1} k^{3}\left\{\left[\tau_{w}-\tau_{w}^{(c)}(k)\right] R-\frac{1}{2}\left(\tau_{w}^{(0)}+k\right) k^{2} R^{3}\right\}
$$

R-D equations:

Conclusions (I)

- The ribbon model (a phenomenological extension of Keener's approach) helps to understand sproing and appears to describe well some of the essential features of twisted scroll wave dynamics.
- Is it also useful in more complicated cases? (twist has to be generated in some way for open scrolls...)
\Rightarrow the case of an excitability gradient.
U. Storb, C. R. Neto, M. Bär and S. C. Müller, PCCP 5, 2344 (2003).

Oxygen gradient leads to a gradient of excitability. Origin of the instability?

Twist distribution in an excitability gradient

$$
\partial_{t} \tau_{w}=\partial_{s}\left(D \partial_{s} \tau_{w}\right)+\partial_{s}\left(c \tau_{w}^{2}\right)+\partial_{s} \omega_{0}
$$

Excitability step
b)

Instability for a large enough excitability step

The critical twist does not correspond to the previously computed sproing threshold.

RD vs. ribbon model

Very similar phenomenon in the ribbon model: different thresholds.

Linear stability: different spectra

Convective vs. absolute instability.
Simpler linear problem:

$$
W_{t}=a W_{z z}+i d \tau_{w} W_{z z z}-b W_{z z z z}
$$

- Fourier: $\sigma=-a k^{2}+d k^{3}-b k^{4}$

$$
\sigma=a q^{2}+i d q^{3}-b q^{4} \Rightarrow 4 \text { roots } \operatorname{Re}\left(q_{1}\right) \geq \operatorname{Re}\left(q_{2}\right) \geq \operatorname{Re}\left(q_{3}\right) \geq \operatorname{Re}\left(q_{4}\right)
$$

For a large domain with $W=W_{z}$ at $z=0, L$,

- Spectrum: σ such that $\operatorname{Re}\left(q_{2}\right)=\operatorname{Re}\left(q_{3}\right)$. (Kulikovskii, 1966).
- Critical points $d \sigma / d q=0$ belong to a branch $\operatorname{Re}\left(q_{i}\right)=\operatorname{Re}\left(q_{j}\right)$ but not necessarily the right one.

Different spectra

- Fourier: $\sigma=-a k^{2}-i d k^{3}-b k^{4}$
- Spectrum: σ such that $\operatorname{Re}\left(q_{2}\right)=\operatorname{Re}\left(q_{3}\right)$. (Kulikovskii, 1966).
- Critical points $d \sigma / d q=0$

Conclusions (II)

- The reduced model seems helpful to study more complicated phenomena.
- Sproing (+ collision with the boundaries) appears to explain the instability seen in BZ reaction with an excitability gradient.
- The results highlight the influence of boundary conditions in non-potential problems even for large domains.

