
Markov Layers Appendix

Two examples of coping with small parameters:
time-stepping for Markov chains,

and propagation in thin layers

T. Stary, I. V. Biktasheva, H. Dierckx and Vadim N. Biktashev
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1 Time stepping for (ODE) Markov chain models (T.Stary, V.N.
Biktashev, IEEE TBME 62: 1070–1076, 2015)

2 Wave propagation in thin layers (I.V. Biktasheva, H. Dierckx, V.N.
Biktashev, PRL 114:068302, 2015)

3 Appendix: details of variable thickness asymptotics
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Markov Layers Appendix

Cellular Membrane

Cellular membrane potential governed by equation:

dVm

dt
=

1

Cm

[
Istim(t)−

N∑

k=1

Ik(Vm, ~X ,Popen)

]
(1)

Vm – membrane potential

Cm – membrane capacitance

Istim(t) – external stimulation current

Ik(Vm, ~X ,Popen) – specific ion current

~X (t) – ionic concentrations
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Markov Layers Appendix

Ion Channel (1/2)

From the Ohm’s law:

Ik = GkPopen(t)[Vm(t)− Ek(Xk)] (2)

Gk – maximum conductance of specific ion current

Ek(Xk) – equilibrium voltage for specific ion (Nerst potential)

Popen(t) – open probability defined by one of the following ion
channel models:

Gate model
Markov chain model
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Problem

Ion Channel (2/2)

Gate model – Hodgkin, Huxley (1952)

dyi
dt

= αyi (Vm)(1− yi )− βyi (Vm)yi (3)

Popen(t) =
N∏

i=1

yi (t) (4)

where yi represent “gates” (hypothetical channel protein subunits);
transition rates (αyi (Vm), βyi (Vm)) are found experimentally.

Markov chain model

d~u

dt
= A(Vm)~u (5)

Popen(t) = u1(t) (6)

where u1 is open (conductive) state; and transition rates matrix
(A(Vm)) is determined experimentally.
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Sodium Channel Markov Chain (1/2)

R Q P O
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INa Markov chain model: 9 interconnected dy-
namical states, state O denotes to conductive
open state (u1).
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Transition rates in the range of physiological potentials.
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Problem

Sodium Channel Markov Chain (2/2)

R Q P O

S T U V W

αRS αSR αQT αT Q αP U αUP

αRQ

αQR

αQP

αP Q

αP O

αOP

αST

αT S

αT U

αUT

αUV

αV U

αV W

αW V

αUO

αOU

dO

dt
=αPOP + αUOU − (αOP + αOU)O

dP

dt
=αQPQ + αUPU + αOPO − (αPQ + αPU + αPO)P

dQ

dt
=αRQR + αTQT + αPQP − (αQR + αQT + αQP)Q

dR

dt
=αSRS + αQRQ − (αRS + αRQ)R

dS

dt
=αTST + αRSR − (αST + αSR)S

dT

dt
=αQTQ + αSTS + αUTU − (αTQ + αTS + αTU)T

dU

dt
=αTUT + αPUP + αVUV + αOUO − (αUT + αUP + αUO + αUV )U

dV

dt
=αUVU + αWVW − (αVU + αVW )V

dW

dt
=αVWV − αWVW
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Reminder: Forward Euler (FE) method

For a given Markov Chain model d~u/dt = A(Vm(t))~u, the forward Euler
scheme reads

~un+1 = [1 + hA(Vm(tn))] ~un (7)

where h = tn+1 − tn is the time step.
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Numerical Instability Issues
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Figure: MC INa ion channel simulation driven by Action potential (Vm) at time
step h = 0.001, 0.043 and 0.044 ms.
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Fast-Slow approach to Markov chain (1/2)

d~u

dt
=

(
1

ε
Af (Vm) + As(Vm)

)
~u

E.g.

Âf =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 ∗
⇀

TS 0 0 0

0 0 0 0
⇀

ST ∗
⇀

UT 0 0

0 0 0 0 0
⇀

TU ∗ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




, Âs =




∗
⇀

PO 0 0 0 0
⇀

UO 0 0
⇀

OP ∗
⇀

QP 0 0 0
⇀

UP 0 0

0
⇀

PQ ∗
⇀

RQ 0
⇀

TQ 0 0 0

0 0
⇀

QR ∗
⇀

SR 0 0 0 0

0 0 0
⇀

RS ∗ 0 0 0 0

0 0
⇀

QT 0 0 ∗ 0 0 0
⇀

OU
⇀

PU 0 0 0 0 ∗
⇀

VU 0

0 0 0 0 0 0
⇀

UV ∗
⇀

WV

0 0 0 0 0 0 0
⇀

VW ∗
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Problem

Fast-Slow approach to Markov chain (2/2)
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Accuracy OK, but
stability no better,
for any plausible
choice of “fast rates”:
T. Stary, V.N. Bik-
tashev, Chaos, 27:
093937 (2017)
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Exponential Time Differentiation – Rush, Larsen (1978)

The exponential time differentiation scheme developed by Rush and
Larsen (1978) is very popular for solving gate models of the form

dy

dt
= α(Vm)(1− y)− β(Vm)y . (8)

Considering α(Vm) and β(Vm) constants for the duration of one time
step, Vm(t) ≈ Vm(tn), we can obtain analytical solution:

yn+1 = y∞(Vm)− [y∞(Vm)− yn] exp(−h/τ) (9)

where

y∞(Vm) = α(Vm)/[α(Vm) + β(Vm)] – ”steady-state” solution

τ = 1/[α(Vm) + β(Vm)] – ”time constant”

h = tn+1 − tn – time step

yn = y(tn)
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Matrix Rush-Larsen (MRL)

We can extend the exponential time differentiation for a given Markov
chain d~u/dt = A(Vm(t))~u as:

~un+1 = exp [A(Vm(tn))h] ~un = T (Vm)~un (10)

Let A(Vm) be diagonalizable, so A(Vm) = S(Vm)Λ(Vm)S(Vm)−1, where
the columns of matrix S(Vm) are the eigenvectors of A(Vm) and matrix
Λ(Vm) is diagonal with eigenvalues of A(Vm) in the corresponding
places. Then matrix T can be computed as

T = exp(Ah) =
∞∑
j=0

(Ah)j

j!
=
∞∑
j=0

(SΛS−1)jhj

j!
=
∞∑
j=0

(SΛS−1SΛS−1 . . . SΛS−1)hj

j!
=

=S

 ∞∑
j=0

(Λh)j

j!

 S−1 = S exp(Λh)S−1 (11)
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Tabulation (tab.)

Because finding eigenvalues and eigenvectors is computationally
expensive,

At/before compile time, we pre-compute the matrices S(Ṽ j
m) and

Λ(Ṽ j
m), for a fine grid of physiological potentials:

Ṽ j
m = −100 + 0.01j , j ∈ J = {0, 1, . . . , jmax}, Ṽ j

m ≤ 70 mV;

At start time, we pre-compute, for given h,

T j = T
(
Ṽ j
m

)
= S

(
Ṽ j
m

)
exp

[
Λ
(
Ṽ j
m

)
h

]
S
(
Ṽ j
m

)−1
, j ∈ J ;

At run time,

~un+1 = T j(n)~un (12)

where j(n) is found from Ṽ
j(n)
m ≈ Vm(tn).

NB: T j are full (dense) matrices.

15 / 52



Markov Layers Appendix

Results (1/2)
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Figure: Cardiac excitation simulations with INa Markov chain model.
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Solution

Results (2/2)

Table: Computational cost [s] during 100 pulses with cycle length of 1 s.

∆t = 10µs ∆t = 40µs ∆t = 100µs
INa scheme INa Total INa Total INa Total
FE (tab.) 2.48 19.98 0.60 5.01
MRL (tab.) 2.96 20.45 0.74 5.16 0.28 2.06

Full model: C.E. Clancy and Y.Rudy, “Na+ channel mutation that causes
both Brugada and long-QT syndrome phenotypes: a simulation study of
mechanism,” Circulation, 105:1208–1213 (2002).
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Conclusions

The Matrix Rush-Larsen method:

Resolves the stability issues, allowing large time steps, limited by
stability of other parts of the model.

Is first-order accurate as much as dependence on the control variable
(e.g. Vm) is concerned.

When tabulated, is comparable to Forward Euler in computing cost.

Requires some start-up time (seconds) for building transition matrix.

Is implemented in BeatBox distributed under GNU General Public
Licence.
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1 Time stepping for (ODE) Markov chain models (T.Stary, V.N.
Biktashev, IEEE TBME 62: 1070–1076, 2015)

2 Wave propagation in thin layers (I.V. Biktasheva, H. Dierckx, V.N.
Biktashev, PRL 114:068302, 2015)

3 Appendix: details of variable thickness asymptotics
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Human atrium geometry

G. Seemann et al.

“Heterogeneous three-

dimensional anatomical

and electrophysiological

model of human atria”,

Phil. Trans. Roy. Soc.

A, 364(1843):1465–1481,

2006
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Spiral wave or scroll wave?

Human heart atrium
geometry: is it
three-dimensional or
two-dimensional?

A variant of Courtemanche at
al. 1998 model

S.R. Kharche et al. “A Computer

Simulation Study of Anatomy In-

duced Drift of Spiral Waves in

the Human Atrium”, BioMed Re-

search International, 2015: 731386

(2015)
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Intro

see movies
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Drift near a step in thickness

Not filament
tension.

Not surface
curvature.

What is it?

(FitzHugh-Nagumo
system)

I.V. Biktasheva et al. “Drift of scroll waves in thin layers caused by thickness features:

asymptotic theory and numerical simulations”, Phys. Rev. Lett., 114: 068302, 2015

23 / 52



Markov Layers Appendix

Drift near a step in thickness

One of
parameters varies
stepwise in space

This produces
drifts that looks
similar to that
from thickness
step

Is this superficial
or essential?

(FitzHugh-Nagumo
system)
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Reaction-diffusion systems in 2D

Generic:
∂tu = f(u) + D∇2u + εh,

u(~r , t), f(u),h(·) ∈ R`, D ∈ R`×`, ` ≥ 2, ~r ∈ R2.

Here εh(. . . ) is a perturbation of any kind, as long as it is small;
mathematically, we consider ε→ 0.

E.g., FitzHugh-Nagumo archetypical excitable model:

∂tu = α−1(u − u3/3− v) +∇2u + εhu(. . . ),

∂tv = α (u + β − γv) + εhv (. . . ),

α = 0.3, β = 0.68, γ = 0.5.
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Spiral waves drift: equation of motion

Drift velocity due to perturbation:

Ṙ ≈ ε
φ+π∫

φ−π

e−iξ

2π

∫∫

R2

W1
+(U; ρ, θ)h̃(U; ρ, θ, ξ)ρdρdθ dξ

where R = X + iY ∈ C is the complex coordinate of the position of
the instant spiral rotation centre, (ρ, θ) are corotating polar coords,
φ = ωt − Φ(t) .

(Translational) response function W1(ρ, θ) ∈ C: how infinitesimal
perturbation at a certain point in space and certain moment in time
affects the position of the spiral in the long run.

Linear expressions, hence superposition principle.
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Spiral waves drift: why do the integrals converge
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Interaction with a parametric step
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HOWEVER!

Scroll wave, not spiral
wave.

Scroll wave asymptotics
also available, but
complicated, and
doubtful to explain this
phenomena.

Can 2D theory help to
describe the 3D effect?

Need a 3D → 2D
reduction!
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3D → 2D reduction for thin layers: the idea

vt = f(v) + D∆3v, v = v(x , y , z , t)

(x , y) ∈ R2, 0 ≤ z ≤ H(x , y) = µH̃(x , y), µ� 1.

with no-flux boundaries at z = zmin

and z = zmax. Then

v(x , y , z , t) = u(x , y , t) +O (µ) ,

and

ut = f(u) + D
1

H(x , y)
∇2 · (H(x , y)∇2u) +O

(
µ2
)

≈ f(u) + D∆2u + D (∇2(lnH) · ∇2u) , ε ∼ lnH � 1
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Attachment and drift near a step: interaction force

d~R

dt
= ε~F (~R) = ε (Fx ,Fy ) = ε

∞∫

0

∮
W (r , θ)†α(r , θ; ~R)dθ rdr ,

α(r , θ; ~R) =





0, r ≤ |d |,
De−iθ

π
√
r2 − d2

[
d2

r2
Ur −

i(r2 − d2)

r3
Uθ

]
,

r > |d |.

r
θ

d

F (~R) = S(d), d ≡ X − xs ,

S(−d) = S(d) = Sx(d) + iSy (d)

dX

dt
= εSx(X ),

dY

dt
= εSy (X ), ε = ln

(
H+

H−

)
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Attachment and drift near a step: asymptotic vs DNS

Simulation Prediction Comparison
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Interaction with a ridge or ditch (FHN)
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Two steps of opposite sign, next to each other. Use the
superposition principle: T = Tx + iTy = S

(
d + w

2

)
−S

(
d − w

2

)

Bifurcation: at some ditch widths, there is “catching” solution, for
some only “frozen” solution.
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Cuneiform ditch (FHN)

Ditch
with the
width
varying
across
the bifur-
cation
value.
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Instead of “frozen” solution, slow drift due to the wedging effect:
forces from opposite walls do not fully compensate each other.

34 / 52



Markov Layers Appendix

Interaction with a circular bump/depression (BZO)
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Now the interaction force field is axially symmetric: radial
component and azimuthal component.

Zero of radial component gives orbiting radius; corresponging
angular component gives orbiting speed.

These depend on the feature size.
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BZ experiment: scroll drift along a step

FIG. 1. Four snapshots of a
scroll wave in a three-dimensional
layer of BZ solution. The sys-
tem is thin in the left and thick
in the right half. The corre-
sponding step induces drift of the
scroll wave center. Time between
frames: (a) and (b) 50min, (b)
and (c) 50min, and (c) and (d)
150min. Field of view: 1.8 cm×
1.8 cm.
H. Ke, Z. Zhang and O. Steinbock

“Scroll wave drift along steps, troughs,

and corners”, Chaos, 25: 064303, 2015

all other arrangements require a nearly perfect alignment of
the filament parallel to these surfaces. Terminating filaments
either end at the same or at different surfaces. In the former
case, the contracting filament converges to a small half circle
that shrinks and annihilates in finite time. In the latter case,
the filament converges to a straight line oriented perpendicu-
lar to the two boundaries. Furthermore, differences in the
rotation phases along the short filament quickly decay.27,38

Accordingly, a top view of such a thin BZ layer will reveal
wave patterns that are essentially identical to quasi-two-
dimensional spirals. Such a wave pattern is shown in Fig. 1.

The experimental system in Fig. 1 consists of a thin and
a thick layer separated by a sharp step that in the images
extends in vertical direction. The height difference between
the two regions is created by a glass slide of constant height
h (here, h¼ 0.32 cm). The shallow, left side of the image
(height H"¼ 0.78 cm) appears on average brighter than the
deep, right side (height Hþ¼ 1.10 cm). This intensity differ-
ence is a simple consequence of the Lambert-Beer law that
expresses a proportional dependence of light absorbance on
optical path length. The dominant light absorbing species in
this BZ system is the chemically reduced catalyst ferroin. In
propagating wave pulses, a significant portion of this com-
pound is oxidized, which reduces light absorbance.
Accordingly, wave patterns appear as bright regions on a
dark background. Absorption changes in vertical direction
are not resolved by our experimental set-up. However, this
shortcoming compared to tomographic techniques39,40 is eas-
ily tolerable for thin layers in which the extent of vertical
concentration variations is small.

Figure 1 consists of four consecutive still frames cover-
ing a time span of 250 min, which is equivalent to about 50
rotation periods. The images show a single, counter-
clockwise rotating scroll wave with no or little twist. Its rota-
tion center is located in very close vicinity to the step but
clearly remains on the shallow, left side of the system. Most
importantly, we observe that the vortex moves along the step
line covering a distance of about 1.2 cm, which equals more

than two wavelengths. This step-induced drift is a verifica-
tion of the recent theoretical predications by Biktasheva
et al.34 In addition, we observe that the drift commences
only if the initial position of the scroll wave is close enough
to the step. This is particularly interesting if the vortex center
is initially in the deep region. Under this condition, the fila-
ment can reach its drift trajectory in the shallow part only if
its lower part annihilates at the step wall (see movie S1 in
Ref. 41). We did not further study these initial dynamics
because the first two or three rotation cycles of the vortex are
typically affected by the methods employed to create the
vortex (here, hydrodynamic perturbations). Nonetheless,
future studies should attempt to analyze the attractor-like
features of the step line in more detail.

The motion of scroll waves along the line of height
change occurs at a constant speed. Figure 2 shows represen-
tative measurements of the filament position s(t) for three
different step heights and a constant value of Hþ. The three
data sets are well described by linear functions and their
slopes suggest that the drift speeds increase with increasing
step heights. The direction of the drift depends on the chiral-
ity of the vortex and on the relative orientation of the shallow
and the deep layer. For the arrangement in Fig. 1 (shallow
region on the left), we find that clockwise rotating scroll
waves move downwards with respect to the image, whereas
counter-clockwise rotating vortices move upwards. We also
note that for the BZ system studied here scroll waves exist
for more than 9 h. During the late stages of the reaction,
chemical processes (foremost the consumption of reactants)
induce changes in most if not all system parameters. We spe-
cifically find that these changes increase the drift velocity
late in the reaction (not shown in Fig. 2).

In the following, we present systematic measurements
of the drift velocity vd for a range of step heights and layer
thicknesses. All experiments are performed at least in tripli-
cate and the experimental error bars represent the corre-
sponding standard deviations. Notice that the step height

FIG. 1. (a)–(d) Four snapshots of a scroll wave in a three-dimensional layer
of BZ solution. The system is thin in the left and thick in the right half. The
corresponding step induces drift of the scroll wave center. Time between
frames: (a) and (b) 50 min, (b) and (c) 50 min, and (c) and (d) 150 min. Field
of view: 1.8 cm$ 1.8 cm.

FIG. 2. Experimental data on the temporal evolution of the position of
three drifting scroll wave centers. The s-coordinate measures space along
the linear edge. The step heights are 0.1 cm (circles), 0.2 cm (squares), and
0.32 cm (diamonds). The solution height in the deep half of the system is
1.1 cm. The straight lines are the best linear fits for the three individual
data sets.
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BZ experiment: speed of scroll drift along a step

FIG. 3. Drift velocities vd as a
function of the thick (H+) and
the thin layer height (H−(a)).
. . . (c) All drift velocities (circles)
are jointly graphed against a
logarithmic abscissa. The blue
cross is obtained from scroll
waves drifting along a rectan-
gular trough (see Fig. 4 for
details). The red lines are based
on the best fit of the proportional
dependence vd ∝ ln(H+/H−) to
the entire data set.

obeys h¼Hþ#H#. Figure 3(a) shows the drift speed as a
function of h for Hþ¼ 1.10 cm¼ constant. Over the range of
step heights studied, the speed increases with increasing h by
a factor of nearly 10. However, an increase in the height of
the thick layer at constant step height reveals a monotonic
decrease (Fig. 3(b)). In Fig. 3(c), we combine these data and
graph the vd values as a function of ln(Hþ/H#). The experi-
mental results are in excellent agreement with the pro-
portional dependence Eq. (1) predicted by Biktasheva et al.34

The proportionality constant is found as S¼ 2.89 lm/s. This
value allows us to also compute the corresponding graphs for
the data in Figs. 3(a) and 3(b). As expected, we again find
excellent agreement with Eq. (1).

The height-induced drift of scroll waves is not limited to
the case of a linear step but—according to the predictions in
Ref. 34—also occurs along the border of disk-shaped pla-
teaus and rectangular as well as V-shaped troughs. We have
tested one of these more complex cases experimentally.
Figure 4 illustrates the dynamics of scroll waves in close vi-
cinity to rectangular trough. The trough is constructed from
two glass slides of equal thickness and extends (with respect
to the images) in horizontal direction. Its depth below the
surrounding plateaus measures 3.2 mm, whereas the system
thickness in the trough is 9.0 mm. Accordingly, the trough
walls have a height of 5.8 mm. The width of the channel
equals 2.5 mm, which corresponds to approximately 0.5
wavelengths of the unperturbed vortex. Despite this small

width, Fig. 4 provides unambiguous evidence for the vortex
drift along the trough. In addition, we find that scroll waves
of opposite chirality can propagate in the same direction as
long as they are affected by different sides of the channel. In
Fig. 4, for instance, the clockwise rotating vortex moves
rightwards along the upper edge of the trough, while the
counter-clockwise rotating structure moves also rightwards
but in this case along the lower edge. As in the earlier geo-
metries, the filament resides in the shallow regions of the
system.

Lastly, we report a phenomenon that was not considered
in the work by Biktasheva et al.34 The image sequence in
Fig. 5 shows that step-induced vortex drift continues along
sharp corners. In this experiment, the step and its corner
were created simply by placing a rectangular glass plate of
constant height into the reaction medium. We emphasize that
these dynamics were observed in numerous experiments and
occur reliably. Within the resolution power of our experi-
ment, we find that drift is neither delayed nor accelerated
when the scroll wave center approaches and passes the

FIG. 3. Drift velocities vd as a function of the thick (Hþ) and the thin layer
height (H#). (a) Data obtained at a constant Hþ of 1.1 cm by variation of the
step height h¼Hþ#H#. (b) Data obtained for a constant step height h of
0.1 cm by variation of the solution height Hþ in the thick system. (c) All
drift velocities (circles) are jointly graphed against a logarithmic abscissa.
The blue cross is obtained from scroll waves drifting along a rectangular
trough (see Fig. 4 for details). The red lines are based on the best fit of the
proportional dependence vd / ln(Hþ/H#) to the entire data set.

FIG. 4. (a)–(d) Four snapshots of scroll waves drifting along the edges of a
rectangular trough. Time between consecutive frames: 27 min. Field of
view: 2.2 cm$ 2.2 cm.

FIG. 5. (a)–(d) Four snapshots of a scroll wave drifting along the edge and
around the corner of a rectangular plateau. The system is thin in the upper
left region. Time between frames: (a) and (b) 60 min, (b) and (c) 8 min, and
(c) and (d) 70 min. System heights: Hþ¼ 9.0 mm and H#¼ 5.8 mm. Field of
view: 1.8 cm$ 1.8 cm.
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BZ experiment: scroll drift along a ditch

FIG. 4. Four snapshots of
scroll waves drifting along the
edges of a rectangular trough.
Time between consecutive
frames: 27min. Field of view:
2.2 cm× 2.2 cm.
H. Ke, Z. Zhang and O. Steinbock

“Scroll wave drift along steps, troughs,

and corners”, Chaos, 25: 064303,

2015

obeys h¼Hþ#H#. Figure 3(a) shows the drift speed as a
function of h for Hþ¼ 1.10 cm¼ constant. Over the range of
step heights studied, the speed increases with increasing h by
a factor of nearly 10. However, an increase in the height of
the thick layer at constant step height reveals a monotonic
decrease (Fig. 3(b)). In Fig. 3(c), we combine these data and
graph the vd values as a function of ln(Hþ/H#). The experi-
mental results are in excellent agreement with the pro-
portional dependence Eq. (1) predicted by Biktasheva et al.34

The proportionality constant is found as S¼ 2.89 lm/s. This
value allows us to also compute the corresponding graphs for
the data in Figs. 3(a) and 3(b). As expected, we again find
excellent agreement with Eq. (1).

The height-induced drift of scroll waves is not limited to
the case of a linear step but—according to the predictions in
Ref. 34—also occurs along the border of disk-shaped pla-
teaus and rectangular as well as V-shaped troughs. We have
tested one of these more complex cases experimentally.
Figure 4 illustrates the dynamics of scroll waves in close vi-
cinity to rectangular trough. The trough is constructed from
two glass slides of equal thickness and extends (with respect
to the images) in horizontal direction. Its depth below the
surrounding plateaus measures 3.2 mm, whereas the system
thickness in the trough is 9.0 mm. Accordingly, the trough
walls have a height of 5.8 mm. The width of the channel
equals 2.5 mm, which corresponds to approximately 0.5
wavelengths of the unperturbed vortex. Despite this small

width, Fig. 4 provides unambiguous evidence for the vortex
drift along the trough. In addition, we find that scroll waves
of opposite chirality can propagate in the same direction as
long as they are affected by different sides of the channel. In
Fig. 4, for instance, the clockwise rotating vortex moves
rightwards along the upper edge of the trough, while the
counter-clockwise rotating structure moves also rightwards
but in this case along the lower edge. As in the earlier geo-
metries, the filament resides in the shallow regions of the
system.

Lastly, we report a phenomenon that was not considered
in the work by Biktasheva et al.34 The image sequence in
Fig. 5 shows that step-induced vortex drift continues along
sharp corners. In this experiment, the step and its corner
were created simply by placing a rectangular glass plate of
constant height into the reaction medium. We emphasize that
these dynamics were observed in numerous experiments and
occur reliably. Within the resolution power of our experi-
ment, we find that drift is neither delayed nor accelerated
when the scroll wave center approaches and passes the

FIG. 3. Drift velocities vd as a function of the thick (Hþ) and the thin layer
height (H#). (a) Data obtained at a constant Hþ of 1.1 cm by variation of the
step height h¼Hþ#H#. (b) Data obtained for a constant step height h of
0.1 cm by variation of the solution height Hþ in the thick system. (c) All
drift velocities (circles) are jointly graphed against a logarithmic abscissa.
The blue cross is obtained from scroll waves drifting along a rectangular
trough (see Fig. 4 for details). The red lines are based on the best fit of the
proportional dependence vd / ln(Hþ/H#) to the entire data set.

FIG. 4. (a)–(d) Four snapshots of scroll waves drifting along the edges of a
rectangular trough. Time between consecutive frames: 27 min. Field of
view: 2.2 cm$ 2.2 cm.

FIG. 5. (a)–(d) Four snapshots of a scroll wave drifting along the edge and
around the corner of a rectangular plateau. The system is thin in the upper
left region. Time between frames: (a) and (b) 60 min, (b) and (c) 8 min, and
(c) and (d) 70 min. System heights: Hþ¼ 9.0 mm and H#¼ 5.8 mm. Field of
view: 1.8 cm$ 1.8 cm.
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BZ experiment: scroll drift around a square edge

FIG. 5. Four snapshots of a scroll
wave drifting along the edge and
around the corner of a rectangular
plateau. The system is thin in the
upper left region. Time between
frames: (a) and (b) 60min, (b)
and (c) 8min, and (c) and (d)
70min. System heights: H+ =
9.0mm and H− = 5.8mm. Field
of view: 1.8 cm× 1.8 cm.
H. Ke, Z. Zhang and O. Steinbock

“Scroll wave drift along steps, troughs,

and corners”, Chaos, 25: 064303, 2015

obeys h¼Hþ#H#. Figure 3(a) shows the drift speed as a
function of h for Hþ¼ 1.10 cm¼ constant. Over the range of
step heights studied, the speed increases with increasing h by
a factor of nearly 10. However, an increase in the height of
the thick layer at constant step height reveals a monotonic
decrease (Fig. 3(b)). In Fig. 3(c), we combine these data and
graph the vd values as a function of ln(Hþ/H#). The experi-
mental results are in excellent agreement with the pro-
portional dependence Eq. (1) predicted by Biktasheva et al.34

The proportionality constant is found as S¼ 2.89 lm/s. This
value allows us to also compute the corresponding graphs for
the data in Figs. 3(a) and 3(b). As expected, we again find
excellent agreement with Eq. (1).

The height-induced drift of scroll waves is not limited to
the case of a linear step but—according to the predictions in
Ref. 34—also occurs along the border of disk-shaped pla-
teaus and rectangular as well as V-shaped troughs. We have
tested one of these more complex cases experimentally.
Figure 4 illustrates the dynamics of scroll waves in close vi-
cinity to rectangular trough. The trough is constructed from
two glass slides of equal thickness and extends (with respect
to the images) in horizontal direction. Its depth below the
surrounding plateaus measures 3.2 mm, whereas the system
thickness in the trough is 9.0 mm. Accordingly, the trough
walls have a height of 5.8 mm. The width of the channel
equals 2.5 mm, which corresponds to approximately 0.5
wavelengths of the unperturbed vortex. Despite this small

width, Fig. 4 provides unambiguous evidence for the vortex
drift along the trough. In addition, we find that scroll waves
of opposite chirality can propagate in the same direction as
long as they are affected by different sides of the channel. In
Fig. 4, for instance, the clockwise rotating vortex moves
rightwards along the upper edge of the trough, while the
counter-clockwise rotating structure moves also rightwards
but in this case along the lower edge. As in the earlier geo-
metries, the filament resides in the shallow regions of the
system.

Lastly, we report a phenomenon that was not considered
in the work by Biktasheva et al.34 The image sequence in
Fig. 5 shows that step-induced vortex drift continues along
sharp corners. In this experiment, the step and its corner
were created simply by placing a rectangular glass plate of
constant height into the reaction medium. We emphasize that
these dynamics were observed in numerous experiments and
occur reliably. Within the resolution power of our experi-
ment, we find that drift is neither delayed nor accelerated
when the scroll wave center approaches and passes the

FIG. 3. Drift velocities vd as a function of the thick (Hþ) and the thin layer
height (H#). (a) Data obtained at a constant Hþ of 1.1 cm by variation of the
step height h¼Hþ#H#. (b) Data obtained for a constant step height h of
0.1 cm by variation of the solution height Hþ in the thick system. (c) All
drift velocities (circles) are jointly graphed against a logarithmic abscissa.
The blue cross is obtained from scroll waves drifting along a rectangular
trough (see Fig. 4 for details). The red lines are based on the best fit of the
proportional dependence vd / ln(Hþ/H#) to the entire data set.

FIG. 4. (a)–(d) Four snapshots of scroll waves drifting along the edges of a
rectangular trough. Time between consecutive frames: 27 min. Field of
view: 2.2 cm$ 2.2 cm.

FIG. 5. (a)–(d) Four snapshots of a scroll wave drifting along the edge and
around the corner of a rectangular plateau. The system is thin in the upper
left region. Time between frames: (a) and (b) 60 min, (b) and (c) 8 min, and
(c) and (d) 70 min. System heights: Hþ¼ 9.0 mm and H#¼ 5.8 mm. Field of
view: 1.8 cm$ 1.8 cm.
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Step-induced drift in modified Courtemanche et al. 1998

“Non-meandering”
modification of a
popular model of
human atrial tissue.

This is 2D simulation
of a thickness step
1:1.2.
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Applications

see movies
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Drift of spiral/scroll in human atrium geometry

..
S.R. Kharche et al. “A Computer Simulation Study of Anatomy Induced Drift of Spiral

Waves in the Human Atrium”, BioMed Research International, 2015: 731386 (2015)
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Conclusions

Geometric features are causing drift, in addition to other well known
factors such as parametric inhomogeneities and anisotropy.

Previously known geometric factors of filament tension and surface
curvature do not exhaust all effect.

Here we have identified an effect related to sharp features. Done it
for thin layes.

Attachment to steps observed in three very different models and in
experiment. Response functions are known only numerically, and
reason for this “universality” is unclear.

Similar effects may happen in “full” 3D domains with sharp features
on boundaries. Application: anchoring of filaments? Self-wrapping
of filaments? Existing 3D drift theory does not (yet) capture this.
Challenge for theoreticians!

43 / 52



Markov Layers Appendix

Acknowledgements

Funding

Engineering and Physical Sciences Research Council (UK)

FWO Flanders (Belgium)

GNU lincensed software used

Response functions: dxspiral∗

Direct numerical simulations: BeatBox∗

3D visualization: ezview∗, based on visualization code of Barkley
and Dowle’s EZSCROLL†

∗ http://empslocal.ex.ac.uk/people/staff/vnb262/
† http://homepages.warwick.ac.uk/~masax/

44 / 52

http://empslocal.ex.ac.uk/people/staff/vnb262/
http://homepages.warwick.ac.uk/~masax/


Markov Layers Appendix

Applications

THE END

45 / 52



Markov Layers Appendix

1 Time stepping for (ODE) Markov chain models (T.Stary, V.N.
Biktashev, IEEE TBME 62: 1070–1076, 2015)

2 Wave propagation in thin layers (I.V. Biktasheva, H. Dierckx, V.N.
Biktashev, PRL 114:068302, 2015)

3 Appendix: details of variable thickness asymptotics
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3D → 2D: coordinate transformation

Original Cartesian coordinates ~r = (x j) = (x , y , z) vs new curvilinear
coordinates (ρj) = (ξ, η, ζ), j = 1, 2, 3 such that:

Coordinate ζ is “transmural”, that is

z(ξ, η, 0) = zmin(x(ξ, η, 0), y(ξ, η, 0)),

z(ξ, η, 1) = zmax(x(ξ, η, 1), y(ξ, η, 1)).

The other two “intramural” coordinates (ξ, η) are chosen locally
orthogonal to ζ, i.e.

∂~r

∂ξ
· ∂
~r

∂ζ
=
∂~r

∂η
· ∂
~r

∂ζ
= 0.

The intramural coordinates match the horizontal Cartesian
coordinates in the sense that

x(ξ, η, 0) = ξ, y(ξ, η, 0) = η.
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3D → 2D: thermal coordinate

A convenient choice: ζ(~r) = T (~r ;µ) which is a solution of the
boundary-value problem

∇2T (x , y , z) = 0, z ∈ (0, µH̃(x , y));

T (x , y , 0) = 0,

T (x , y , µH̃(x , y)) = 1, (13)

⇒

T =
z

µH̃
+
µ2H̃2

6

(
1− z2

µ2H̃2

)
z

µH̃

(
(∇L)2 −∇2L

)
+O

(
µ4
)
,

where
H̃ = H̃ (x , y) , L = L(x , y) = ln H̃(x , y).
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3D → 2D: metric tensor

[
gjk

]
=

[
∂~r

∂ρj
· ∂

~r

∂ρk

]
=




h11 h12 0
h21 h22 0
0 0 g33




where

∂~r

∂ζ
= λ(ζ)∇T (~r), T (~r(ρj)) ≡ ζ, ~r(0) = (ξ, η, 0).

The asymptotics for the solution are

λ = µ2H̃2(ξ, η)+O
(
µ4
)
,

[
x
y

]
=

[
ξ
η

]
− 1

2
µ2H̃

[
H̃x

H̃y

]
ζ2+O

(
µ4
)
,

z = µH̃ ζ − 1

6
µ3H̃3

[
(∇L)2

(
ζ + 2ζ3

)
−∇2L

(
ζ − ζ3

)]
+O

(
µ5
)
,

⇒
hab = δab +O

(
µ2
)
, a, b = 1, 2,

g33 = µ2H̃2 − 1

3
µ4H̃4

[
(∇L)2

(
1 + 3ζ2

)
−∇2L

(
1− 3ζ2

)]
+O

(
µ6
)
.
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3D → 2D: Laplace-Beltrami operator

∇2v = |g |−1/2 ∂

∂ρj

(
|g |1/2g jk ∂v

∂ρk

)

=
1

µ2H̃2
v′′ +∇L∇v +∇2v + G v′′ +O

(
µ2
)

where

G = G (ξ, η, ζ) =

(
1

3
+ ζ2

)
(∇L)2 −

(
1

3
− ζ2

)
∇2L,

′ ≡ ∂ζ ; ∇ ≡ ∇2 = (∂ξ, ∂η).
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3D → 2D: reaction-diffusion in curvilinear coordinates

∂tv = D

[
1

µ2H̃2
v′′ +∇L∇v +∇2v + G v′′ +O

(
µ2
)]

+ f(v)

D∂3v(ξ, η, 0, t) = D∂3v(ξ, η, 1, t) = 0.

Looking for solutions in the form

v(ξ, η, ζ, t;µ) = u(ξ, η, ζ, t) + µ2g(ξ, η, ζ, t) +O
(
µ4
)
.

and consider orders of µ:

O
(
µ0
)

: Du′′ = 0, [Du′]ζ=0,1 = 0, ⇒ ∂ζu ≡ 0, u = u(ξ, η, t).

O
(
µ2
)

: Dg′′ = H̃2

[
∂tu−

1

H̃
D∇

(
H̃∇u

)
−DGu′′ − f(u)

]
, [Dg′]ζ=0,1 = 0.
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3D → 2D: result

Solvabiliy condition of the O
(
µ2
)

equation as an ODE for g wrt ζ:

Dg′′ = χ, [Dg′]ζ=0,1 = 0 ⇒ χ = 0

χ ≡ ∂tu−
1

H̃
D∇

(
H̃∇u

)
− f(u) = 0

The asymptotic expansion is in powers of µ2, hence

∂tu =
1

H̃
D∇

(
H̃∇u

)
+ f(u) +O

(
µ2
)

≈ f(u) + D∆2u + D (∇2(lnH) · ∇2u)

Q.E.D.
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