

#### CARDIAC ELECTRO-MECHANICS & MEF: THE STRESS-ASSISTED DIFFUSION 'SAD' APPROACH

#### **ALESSIO GIZZI** UNIVERSITY CAMPUS BIO-MEDICO OF ROME





NONLINEAR PHYSICS AND MATHEMATICAL MODELING LAB WWW.MULTIPHYSICA.IT



#### ACKNOWLEDGMENTS





**EMILIA ENTCHEVA** 

**FLAVIO H. FENTON** 

**DAISUKE SATO** 

YOHANNES SHIFERAW

**SIMONETTA FILIPPI** UNIVERSITY CAMPUS BIO-MEDICO OF ROME

**ALESSANDRO LOPPINI** 

**CHRISTIAN CHERUBINI** 

**RICARDO RUIZ-BAIER** UNIVERSITY OF OXFORD

OXFORD INSTITUTE

**FLAVIO H. FENTON** GEORGIA TECH





NONLINEAR PHYSICS AND MATHEMATICAL MODELING LAB WWW.MULTIPHYSICA.IT

# **CAMPUS BIO-MEDICO OF ROME**





NONLINEAR PHYSICS AND MATHEMATICAL MODELING LAB WWW.MULTIPHYSICA.IT









SIMONETTA FILIPPI (HEAD) CHRISTIAN CHERUBINI (ASSOCIATE PROF.) LETIZIA CHIODO (ASSISTANT PROF.) ALESSIO GIZZI (ASSISTANT PROF.) ALESSANDRO LOPPINI (ASSISTANT PROF.) MARTINA NICOLETTI (PHD)

HTTP://WWW.MULTIPHYSICA.IT NONLINEAR PHYSICS & MATHEMATICAL MODELING LAB CAMPUS BIO-MEDICO UNIVERSITY OF ROME INTERNATIONAL CENTER FOR RELATIVISTIC ASTROPHYSICS NETWORK







# **ACTIVE DEFORMABLE MEDIA**

#### ELECTRO-ACTIVE POLIMERS (EAP)



Ion exchange resins



Multiple materials





ELECTRO-ACTIVE POLYMER (EAP) ARE BASED ON ION-EXCHANGE PROPERTIES OF RESINS

#### EAP ARE USED IN SEVERAL CHEMICAL & ROBOTIC APPLICATIONS - ARTIFICIAL MUSCLES



Electroactive Polymer (EAP) Actuators as Artificial Muscles Reserverses

## **ACTIVE DEFORMABLE MEDIA**

#### BIOLOGICAL TISSUES





BIOLOGICAL ACTIVE TISSUES: HEART, SKELETAL MUSCLE, GASTRO-INTESTINE, EYE'S IRIS...

- SHOW THE ABILITY TO DEVELOP CONTRACTIONS, PRODUCING THE MECHANICAL FORCES NECESSARY TO THE ORGAN'S FUNCTION.
- CONTRACTIONS ORIGINATED BY AN ELECTRIC POTENTIAL DUE TO TRANSMEMBRANE (K-, NA-) AND INTRACELLULAR IONS (CA++)

# **EXCITATION-CONTRACTION**

MACROSCOPIC CORRELATION BETWEEN:

**Biophysical Motivation** 

- \* THE 5 ECG PHASES
- \* THETRANSMEMBRANE POTENTIAL
- \* THE CONTRACTION WAVE FOR A MUSCULAR FIBER (CALCIUM)
- MICROSCOPIC RELATION BETWEEN: ACTIVE PASSIVE CONTRIBUTIONS



#### **ATRIAL MEF**

**Biophysical Motivation** 

- ROLE OF MECHANO-ELECTRIC FEEDBACK (MEF) IN ARRHYTHMOGENESIS
- **STRETCH** CONTRIBUTES TO:
  - \* I) FOCAL ARRHYTHMIAS BY INDUCING EARLY AFTER-DEPOLARIZATIONS
  - \* 2) <u>REENTRANT ARRHYTHMIAS</u> BY
    - ✦ SHORTENING THE CONDUCTION VELOCITY
    - ✦ SHORTENING REFRACTORY PERIOD INCREASING SPATIAL DISPERSION



#### **ATRIAL MEF**

#### **Biophysical Motivation**



RAVELLI 2003

#### **ATRIAL MEF**



SVT is supraventricular tachycardia,  $\Delta P$  the average change in mean atrial pressure, RP refractory period. The parameter measured increased ( $\uparrow$ ), decreased ( $\downarrow$ ), or did not change ( $\leftrightarrow$ ).

8

Dog

Balloon inflation

RAVELLI 2003

Solti et al. (1989)

# **ACTIVE ELECTRO-MECHANICS (EM)**

#### ELECTRO-ACTIVE SYSTEMS' CHARACTERS:

- \* DEFORMATIONS MAY INDUCE A CHANGE OF THE EVENTUAL INITIAL ISOTROPY OF A BODY
- \* AN **INTERMEDIATE NON COMPATIBLE CONFIGURATION** IS USUALLY ACCOUNTED FOR (<u>MULTIPLICATIVE DECOMPOSITION</u>)
- GENERALIZED CONSTITUTIVE EQUATIONS USUALLY IMPLY MULTIPLE PHYSICAL COUPLINGS (VISCOSITY, DAMAGE, GROWTH, TEMPERATURE)

#### ELECTRO-ACTIVE BIOLOGICAL SYSTEMS' CHARACTERS:

\* THE INTERNAL ACTIN-MYOSIN BINDING (EXCITATION-CONTRACTION - MEF) CAN BE CONSIDERED AS A MICRO-STRUCTURAL ALTERATION OF THE INTERNAL KINEMATIC STATE OF THE MUSCLE FIBRE, WHICH LEADS TO CHANGES IN THE MACROSCOPIC BEHAVIOR

> GIZZI ET AL. 2015 YANG ET AL. 2006

# **ACTIVE ELECTRO-MECHANICS (EM)**

- ACTIVE STRESS (NASH & PANFILOV 2004)
  - **MOST USED APPROACH IN CARDIAC ELECTRO-MECHANICS**
- ACTIVE STRAIN (CHERUBINI ET AL. 2008, AMBROSI ET AL. 2011, RUIZ-BAIER ET AL. 2012)
  - REPRESENTS AN EIGENDEFORMATION APPROACH WELL ESTABLISHED FOR REALISTIC CARDIAC ELECTRO-MECHANICAL APPLICATIONS
  - \* MULTIPLICATIVE DECOMPOSITION OF THE DEFORMATION GRADIENT TENSOR
- THERMODYNAMIC APPROACH (GIZZI ET AL. 2015)
  - RELATES THE CONCEPTS OF ACTIVE DEFORMATION & ACTIVE STRESS THROUGH <u>THERMODYNAMICAL ARGUMENTS</u>
  - **\* ADDITIVE DECOMPOSITION OF THE STRAIN ENERGY**
  - **\* MAXWELL ELECTRO-STATICS**





The active stress model does not derive from thermodynamical arguments

#### **ADVANTAGES**

Easy to implement in numerical codes for a proof of concept theoretical study

Proof of Concept

# **DIFFUSION IN SOLIDS**

#### INFINITESIMAL ELECTRO-DYNAMICS

- RATIONALIZE DIFFUSION IN SOLIDS BASED ON <u>CONSERVATION OF MOMENTUM</u> FOR THE DIFFUSING SPECIES
- THE BALANCE EQUATION CONTAINS:
  - **\* STRESS SUPPORTED BY THE DIFFUSING SPECIES**
  - DIFFUSIVE FORCE VECTOR FOR THE EXCHANGE OF MOMENTUM BETWEEN THE DIFFUSING SPECIES AND THE SOLID MATRIX

INTERDIFFUSING MATERIALS ARE ACCOUNTED FOR BY THE CONSTITUTIVE PRESCRIPTIONS (APPLIED TO <u>METALLURGY</u>, <u>POLYMER PHYSICS</u>, <u>GEOPHYSICS</u>)

THESE TWO QUANTITIES ARE NOT IDENTIFIED IN THE CLASSICAL DIFFUSION INTERPRETATION

Homemade Proof of Concept





| E |                       |                                                          |                       |              |                                               |                                   | JOURNAL OF POLYMER SCIENCE: Polymer Physics Edition VOL. 11 ( |                                               |                               |                                             |  |
|---|-----------------------|----------------------------------------------------------|-----------------------|--------------|-----------------------------------------------|-----------------------------------|---------------------------------------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------|--|
| l |                       |                                                          |                       |              |                                               |                                   | On the                                                        | Stress-Depen                                  | dent Diffusion Equation       | 1                                           |  |
|   | Acta Mechanica 37, 26 | - 284 (1980) ACTA MECHANICA<br>G by Springer-Werlag 1980 | Acta Mechanica 45, 27 | 5—293 (1962) | ACTA MECHANICA<br>(a) by Springer-Veriag 1982 | Acta Mechazies 47, 117-151 [1983] |                                                               | -151 (1983)                                   | ACTA MEC<br>© by Springer-Ver | ACTA MECHANICA<br>© by Springer-Verlag 1963 |  |
| L |                       | On the Problem of Diffusion in Solids<br>By              |                       | On the Theor | y of Stress-Assisted Diffusion, I             |                                   |                                                               | On the Theory of Stress-Assisted Diffusion, I |                               | iffusion, II                                |  |
| L |                       |                                                          |                       | By           |                                               |                                   |                                                               |                                               | By                            |                                             |  |
|   |                       | E. C. Aifantis, Urbana, Illinois                         |                       | R. K. Wilso  | n azd E.C. Aifantis, Urbana, Illinois         |                                   |                                                               | D. J. Unger and                               | d E. C. Aifantis, Minneapol   | is, Minnesota                               |  |

### **STRETCHED VENTRICLES**



# STRESS-ASSISTED DIFFUSION 'SAD'

- THE **BASIC PHENOMENOLOGY** IS THE SAME EITHER IF "MICROPOROSITY" OR "MACROPOROSITY" IS INVOLVED.
- DIFFUSION OF A DILUTE SOLUTE IN A SOLID MATRIX.
- GENERALIZE THE THEORETICAL WORK OF FICK (A PHENOMENOLOGICAL DESCRIPTION OF DIFFUSION THAT PRECEDES ANY EXPERIMENTAL WORK) WHICH IS CURRENTLY APPLIED IN ANY ELECTROPHYSIOLOGICAL MODELING (CABLE EQUATION).
- THE THEORY OF CONTINUOUSLY DISTRIBUTED MATTER (EULER'S AXIOMS) LEADS TO THE BALANCE OF MOMENTUM.
- CONSTITUTIVE EQUATIONS WILL DIFFERENTIATE BETWEEN:
  - **\* DIFFUSION IN STRESSED SOLIDS**
  - **\* DIFFUSION OF VISCOUS SOLUTE**
  - **\* DIFFUSION IN ELASTIC & INELASTIC MATERIALS**
- FRAMED WITHIN THE **THEORY OF MIXTURES**: ATKIN & CRAINE, BOWEN, TRUSDELL, MAXWELL'S GASES THEORY



**Voltage Membrane** 

as

"continuum"

Diffusion process strongly dependent on the mechanical state



## **'SAD' THEORETICAL DERIVATION**



# **EM-SAD:** A MINIMAL MODEL

**2v Reaction-Diffusion (RD) Model (Nash & Panfilov 2004)** 

**RD Constitutive Equations** 

**Classical cubic** 

"Bistable" function

$$\frac{\partial V}{\partial t} = \frac{\partial}{\partial x_i} d_{ij}(\sigma_{ij}) \frac{\partial V}{\partial x_j} + I_{ion}(V,r) \bigstar \qquad I_{ion} = -kV(V-a)(V-1) - rV$$

$$\frac{dr}{dt} = f(V,r) \qquad \qquad \text{No sac} \qquad f(V,r) = \left(\varepsilon + \frac{\mu_1 r}{\mu_2 + V}\right) (-r - kV(V-b-1)) + V$$

$$\text{Nonlinear} \qquad \text{Nonlinear}$$

$$\text{"Recovery" dynamics}$$

Active Stress Formulation (Nash & Panfilov 2004)

$$\frac{\partial T_a}{\partial t} = \epsilon(V)(k_{T_a}V - T_a)$$

#### Equilibrium

$$\frac{\partial \sigma_{ij}}{\partial x_i} = 0 \qquad J = 1$$

Representation Formula for  
2nd Order Isotropic TensorsTwo additional  
Material Parameters
$$d_{ij}(\sigma_{ij}) = D_0 \left(\delta_{ij} + D_1 \sigma_{ij} + D_2 \sigma_{ik} \sigma_{kj}\right)$$

Isotropic Stress-Assisted Diffusion Model

$$\sigma_{ij} = \sigma_{ij}^{\text{passive}} + \sigma_{ij}^{\text{active}} \quad \dots \quad \flat \quad \sigma_{ij} = 2c_1b_{ij} - 2c_2b_{ij}^{-1} - p\delta_{ij} + T_a\delta_{ij}$$

Passive Neo-Hookean material with ISOTROPIC diffusion & ACTIVE stress



 $\sigma_1 = 1 \text{ or } \sigma_2 = 1$ 





$$d_{ij}] = \begin{bmatrix} 1 + D_1 \sigma_1 + D_2 \sigma_1^2 & 0\\ 0 & 1 + D_1 \sigma_2 + D_2 \sigma_2^2 \end{bmatrix}$$

Ellipticity regime (Non-negative diffusion)

$$1 + D_1 \sigma_1 + D_2 \sigma_1^2 > 0, \quad \to \quad 4D_2 > D_1^2$$





$$d_{ij}(\sigma_{ij}) = D_0 \left( \delta_{ij} + D_1 \sigma_{ij} + D_2 \sigma_{ik} \sigma_{kj} \right)$$

- 1. Calculate the <u>Conduction Velocity</u> of the <u>Excitation Wave</u> (Voltage) for different combinations of the Material Parameters
- 2. Compute the ratio CVx/CVy











## **EM-SAD: ENHANCED MEANDERING**



### EM - SAD & SAC (MINIMAL)

**2v Reaction-Diffusion (RD) Model** 

**RD** Constitutive Equations

**Active Stress Formulation** 

$$\frac{\partial V}{\partial t} = \frac{\partial}{\partial x_i} d_{ij}(\sigma_{ij}) \frac{\partial V}{\partial x_j} + I_{ion}(V, r) + I_{sac}(\lambda, V)$$
$$\frac{dr}{dt} = f(V, r)$$

 $\frac{\partial T_a}{\partial t} = \epsilon(V)(k_{T_a}V - T_a)$ 

**Isotropic Stress-Assisted Diffusion Model** 

$$I_{\text{ion}} = -kV(V-a)(V-1) - rV$$
$$f(V,r) = \left(\varepsilon + \frac{\mu_1 r}{\mu_2 + V}\right)(-r - kV(V-b-1))$$

 $I_{\rm sac}$ 

$$d_{ij}(\sigma_{ij}) = D_0 \left( \delta_{ij} + D_1 \sigma_{ij} + D_2 \sigma_{ik} \sigma_{kj} \right)$$

$$(\lambda, V) = G_s H_{\text{sac}}(\lambda - 1)(V_{\text{sac}} - V)$$

**YES SAC** 

Minimal model of Stretch-Activated Currents

$$\frac{\partial \sigma_{ij}}{\partial x_i} = 0 \qquad J =$$

$$\sigma_{ij} = 2c_1 b_{ij} - 2c_2 b_{ij}^{-1} - p\delta_{ij} + T_a \delta_{ij}$$

1



#### EM - SAD & SAC

Spiral Tip Meandering





SAD stabilizes meandering

SAC generates irregular behavior

Static/Dynamic & Displacement/Traction BCs conduct to different scenarios

#### EM - SAD & SAC ... ?



## LIMITATIONS...

GENERALIZED ELECTRO-MECHANICAL FRAMEWORK

STRESS-ASSISTED DIFFUSION

V

SAC VS. SAD

SOTROPIC HYPERELASTIC MATERIALS CAN UNDERGO ANISOTROPIC REACTION-DIFFUSION DYNAMICS

MINIMAL PROOF OF CONCEPT

# OPEN QUESTIONS...

#### MULTISCALE MODELING

FROM <u>CELL-CELL COUPLING</u> TO TISSUE SCALE (EMERGENT PHENOMENA)

D PHYSIOLOGICAL MODELING (ROLE OF CALCIUM)

MODEL VALIDATION: SACESAD LIMITS



RUIZ-BAIER, AG ET AL. 2014

Π....

LENARDA, AG, PAGGI 2018

HURTADO, CASTRO, AG 2016

#### A. T. WINFREE, 2000

#### PRINCETON GRADUATE SCHOOL CENTENNIAL



#### ANUBIS IN THE DESERT EST OF EGYPT - 3RD MILLENNIUM BCE

#### "Weighing the heart against the feather of Truth"



#### we are still trying...

### **EM-SAD: INDUCED ANISOTROPY**



Eigenvalue/Eigenvector rendering of the a Second Order Tensor in a two-dimensional view

Solve local eigenvalue problems using the tensor at hand and display an ellipsoid whose shape and size depend on the local eigendirection

$$\sigma_{ij} = 2c_1 b_{ij} - 2c_2 b_{ij}^{-1} - p\delta_{ij} + T_a \delta_{ij}$$

 $d_{ij}(\sigma_{ij}) = D_0 \left( \delta_{ij} + D_1 \sigma_{ij} + D_2 \sigma_{ik} \sigma_{kj} \right)$