Spiral wave chaos: triggers, drivers, rotors, and wavelets

Roman Grigoriev Georgia Institute of Technology

Outline

- Interaction between spiral waves
- Topological analysis of fibrillation
- Can ablation make things worse?

The Karma model

$$\partial_t u = D_u \nabla^2 u + (u_0 - v^4) [1 - \tanh(u - 3)] \frac{u^2}{2} - v$$
$$\partial_t v = \varepsilon [\beta \Theta_s (u - 1) - v]$$

Restitution parameter:

$$\beta = \frac{1}{1 - e^{-R}}$$

Breakups and mergers in the Karma model

Plane and spiral waves unstable to alternans (R > 1)

Tiling

Complex Ginzburg-Landau Equation:

$$\partial_t A = A + (1 + i\alpha) \nabla^2 A - (1 + i\beta) |A|^2 A$$

Amplitude/phase representation:

$$A = \rho e^{i\varphi}$$

Bohr, Huber, Ott (1996)

Amplitude Equation:

 $\partial_t \rho = [\nabla^2 - (\nabla \phi)^2] \rho - \alpha (2\nabla \phi \cdot \nabla \rho + \rho \nabla^2 \phi) + (1 - \rho^2) \rho$

Strongly nonlinear waves

Use cycle area instead of amplitude:

and elapsed time from crossing a Poincare section instead of phase:

$$I = \int v du = \int_{0}^{T} v u \delta dt$$

$$\theta = \int \omega dt, \quad \omega = \frac{2\pi}{T}$$

Alternative representations

Byrne, Marcotte, Grigoriev (2014)

Tile boundaries

Can describe tile boundaries analytically:

$$\frac{dr}{d\varphi} = \frac{-\sigma r'^2 - \sigma' r (R\cos\varphi - r) + 2\pi m r' r \sin\varphi}{\sigma' R^2 \sin\varphi + m \left(r'^2 - r' (r - R\cos\varphi)\right)}$$

Luo, Zhang, Zhan (2009)

Tiling spiral wave chaos

t/T = 0.0000

• Tiles are noncircular

• Neumann boundary conditions

Dynamics of the tiles

Motion of boundaries:

$$\mathbf{c} = (\omega_1 - \omega_2) \frac{\mathbf{k}_1 - \mathbf{k}_2}{|\mathbf{k}_1 - \mathbf{k}_2|^2}$$

Howard, Kopell (1977)

Dynamics of the spirals

t/T = 0001

Stroboscopic map

- \circ Why are some cores moving (and others are not)?
- Why is their motion so slow?
- What sets the distance between cores?

Local Euclidean symmetries

Response functions

Local Euclidean symmetries

Response functions

Marcotte, Grigoriev (2016)

Interaction of cores with boundaries

Interaction of cores with boundaries

Marcotte, Grigoriev (2016)

- Drift equation
 - --- Saddle-point approximation

Core-core interaction

t/T = 0.0000

Core-core separation (& tile size)

The mechanism of spiral chaos

- The tiles are of different size
- The frequencies of spirals differ
- Tiles \circ The tiles boundaries drift (slowly)
 - Small (fast) spirals grow at the expense of big (slow) ones
 - The dynamics of spirals is fast
 - Small spirals (L < $4l_c$) survive for less than one period
 - Medium size spirals $(4l_c < L < \lambda)$ merge as a result of meandering instability
 - Large spirals (L > λ) break up due to alternans instability*
 - for the Karma model

Spirals

Outline

- Interaction between spiral waves
- $\circ~$ Topological analysis of fibrillation
- Can ablation make things worse?

"Tachycardia" → **"fibrillation"** (2D)

Mitchell-Schaeffer model

Stefanos Folias (2007)

Phase singularities

Wu et al. (2004)

Amplitude description

Byrne, Marcotte, Grigoriev (2014)

Topological description

• Complexity of the excitation pattern can be quantified by the number of phase singularities (PS)

Marcotte & Grigoriev (2017)

Topological description

- Complexity of the excitation pattern can be quantified by the number of phase singularities (PS)
- Each PS lies at the intersection of two level sets (e.g., $\partial_t u = 0$ and $\partial_t v = 0$ or $\varphi = \varphi_1$ and $\varphi = \varphi_2$ or $\partial_t u = 0$ and $\partial_t^2 u = 0$).

Marcotte & Grigoriev (2017)

Topological description

- Complexity of the excitation pattern can be quantified by the number of phase singularities (PS)
- Each PS lies at the intersection of two level sets (e.g., $\partial_t u = 0$ and $\partial_t v = 0$ or $\partial_t u = 0$ and $\partial_t^2 u = 0$).

- Each PS has a topological charge: $q = \operatorname{sign}(\hat{\mathbf{z}} \cdot \nabla d_1 \times \nabla d_2) = \pm 1$
- The net topological charge is conserved*: $\sum q_i = 0$
- Phase singularities can only be created/destroyed in pairs*

Topological transitions

Pair creation/destruction

Pair creation

Pair creation

Pair destruction

Pair destruction

"Atrial fibrillation" (MS)

mpeg movie \rightarrow jpeg frames (with artifacts) \rightarrow mpeg movie

Ventricular fibrillation (pig)

Herndon & Fenton

Optical mapping (voltage, epicardium)

Data quality

Far from PS

Near PS

Level-set based approach

Signed distance function

Ron Fedkiw

Level-set based approach

Ventricular fibrillation (3D)

PS: 11; Charge: 1; t=1201

Gurevich et al. (2017)

Event statistics

Rotor number statistics

Pig VF

MS AF

Rotor tracking

Rotor mapping from sparse recordings

Topological perspective

- Topological analysis applies to both numerical simulations and experimental recordings
- It provided new insight into dynamical mechanisms underlying fibrillation.
- *Initiation* of fibrillation in 2D (AF), aka *the trigger*:
 - conduction block leading to wave breakup
- *Sustained* fibrillation, aka *the driver*, is a balance of:
 - wave coalescence
 - wave merger
- Similar results in 3D (VF)