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Ca waves and triggered activity

Ca wave

Triggered depolarization  (mediated by
NaCa exchanger)

Ca wave

𝐶𝑎 2+

𝑉(𝑡)

It is generally believed that triggered depolarization can propagate in 
tissue and initiate Arrythmia.

Ca waves can induce triggered excitations  

A wide range of arrhythmias have been attributed to a distruption in Ca cycling.



Ca waves are stochastic events

Stochasticity is due to fluctuations at the ion channel level which determine
wave nucleation.

Aistrup et al, Cardivascular Research 2017

Dog atrial myocyte



Therefore, in cardiac tissue stochastic Ca activity must be synchronized over
hundreds of thousands of cells.  

Can these stochastic events induce electrical excitations
at the tissue scale? 

How can stochastic Ca waves, which originates at the subcellular scale, be 
Synchronized between large populations of cells??

Electrical coupling averages voltage over a length scale

𝜉 ∼ 𝐷𝑉𝐶𝐿 ≈ 5𝑚𝑚

This corresponds to roughly 100 cells (in 1D) and over a million in 3D.    
Therefore, stochastic triggered waves effect on voltage averaged out over many cells.   



A multiscale approach to model stochastic Ca waves at the subcellular
scale, and their effects in populations of millions of cells

A computational challenge

Signaling between ion channels:    space ∼ 1 − 10 𝑛𝑚 𝑡𝑖𝑚𝑒 ~0.01 − 0.1 𝑚𝑠

Length and time scales 

Tissue excitations:    space ∼ 𝑚𝑚 𝑡𝑖𝑚𝑒 ~ 1 − 1000𝑚𝑠



To model atrial cells we have to account for their
unique architecture

Atrial myocytes lack a well developed t-tubule system
Signaling occurs mostly at the cell boundary.

Atrial myocyte Ventricular myocyte 

Di-8-ANEPS membrane staining of rat myocyte

Kirk et al. J. Physiol, 2004



Detailed computational model of subcellular Ca in atrial cells

Stochastic simulations of 60 × 20 × 20 lattice of compartments



𝐼𝑅𝑦𝑅 = 𝑔𝑅𝑦𝑅𝑛𝑜(𝑐𝑗𝑠𝑟 − 𝑐𝑑) 𝑛𝑜 = # 𝑜𝑓 𝑅𝑦𝑅 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑂

𝐼𝑐𝑎 = 𝑔𝑐𝑎𝑚𝑜(𝑐𝑜 − 𝑐𝑑)
𝑚𝑜 = # 𝑜𝑓 𝐿𝐶𝐶 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑂

Stochastic variables

Model structure

𝑑𝑐𝑠
𝑑𝑡

= 𝛽𝑠
𝑐𝑝 − 𝑐𝑠
𝜏𝑑𝑠

𝑣𝑝
𝑣𝑠

−
𝑐𝑠 − 𝑐𝑖
𝜏𝑐𝑠

+ 𝐼𝑁𝐶𝑋

𝑑𝑐𝑛𝑠𝑟
𝑑𝑡

= 𝐼𝑢𝑝
𝑣𝑖
𝑣𝑛𝑠𝑟

−
𝑣𝑗𝑠𝑟
𝑣𝑛𝑠𝑟

𝑐𝑛𝑠𝑟 − 𝑐𝑗𝑠𝑟
𝜏𝑐𝑠𝑟

𝑑𝑐𝑗𝑠𝑟
𝑑𝑡

= 𝛽𝑗𝑠𝑟
𝑐𝑛𝑠𝑟 − 𝑐𝑗𝑠𝑟

𝜏𝑐𝑠𝑟
− 𝐼𝑅𝑦𝑅

𝑣𝑝
𝑣𝑗𝑠𝑟

𝑑𝑐𝑝
𝑑𝑡

= 𝛽𝑝 𝐼𝑅𝑦𝑅 + 𝐼𝑐𝑎 −
𝑐𝑝 − 𝑐𝑠
𝜏𝑑𝑠

𝑑𝑐𝑖
𝑑𝑡

= 𝛽𝑖
𝑐𝑠 − 𝑐𝑖
𝜏𝑐𝑠

𝑣𝑠
𝑣𝑖

− 𝐼𝑢𝑝

Restrepo et al. 2008



20μm

100μM

0μM

𝑡 = 20𝑚𝑠

Simulation of normal Ca release in response to AP clamp

𝑐𝑖
(𝜇𝑀)

𝑡 (𝑚𝑠)

av

𝑐𝑖

𝑉(𝑡)

𝑐𝑠𝑟 = 1100𝜇𝑀



𝑐𝑖
(𝜇𝑀)

𝑡 (𝑚𝑠)

av

40𝜇𝑚

𝑐𝑖

𝑉(𝑡)

𝑐𝑠𝑟 = 1230𝜇𝑀

Response at higher SR load



Ca waves are excited from the cell boundary

𝑐𝑖
(𝜇𝑀)

𝑡 (𝑚𝑠)

𝑐𝑖

𝑉(𝑡)

70𝑚𝑠

110𝑚𝑠

150𝑚𝑠

190𝑚𝑠

Release at boundary can
Trigger Ca waves in the cell
Interior.



2D Imaging confirms mechanism

From Wasserstrom lab



normal

Wave nucleation at cell boundary due to 
L-type Ca current triggered Ca sparks

Triggered wave

Wave nucleation in interior due to stochastic
fluctuations.  Typically longer waiting times.

Spontaneous 
wave

Mechanism for Ca waves (dog atria)



Detailed model is intractable in tissue since it requires 
stochastic simulation of several million Ion channels 
within hundreds of thousands of cells in 3D cardiac 
tissue.

Tissue modeling problematic

Need a phenomenological model that captures 
the stochastic and nonlinear dynamics and can 
be implemented in cardiac tissue.



Phenomenological modeling of Ca cycling

We will apply a population dynamics approach and keep track only of the 
number of sparks in a population of RyR clusters.    Avoid keeping track of
Individual channel states.

The number of sparks will obey a simple rate process:

𝑁𝑆

𝛼
⇌
𝛽
𝑆

𝑁𝑆: no spark
𝑆: spark 

𝛼 → Rate of spark recruitment  from population of available RyR clusters
𝛽 → Rate of spark extinction



Stochastic simulation of spark number

Let 𝑁 be the number of clusters  and 𝑛(𝑡) is the number of sparks at time 𝑡:   

𝑛 𝑡 + Δ𝑡 = 𝑛 𝑡 − Δ𝑛− + Δ𝑛+ .

Number of new sparks:                 Δ𝑛+ → 𝐵 𝛼𝛥𝑡, 𝑁 − 𝑛 .

Number of sparks that extinguish:      Δ𝑛− → 𝐵 𝛽𝛥𝑡, 𝑛 .

𝐵 𝑝, 𝑛 is the number of successes from 𝑛 trials with probability of success 𝑝

Change in channel numbers is taken to have a binomial distribution.

This approach should capture the correct statistics of spark number fluctuations.



Phenomenological Ca cycling equations

We can now write ODE models of Ca cycling coupled to stochastic evolution
of Ca spark number:

𝑛𝑖(𝑡)

𝑛𝑏(𝑡)

Keep track of spark number in the interior and boundary regions:

𝑁𝑆: no spark
𝑆: spark 

𝑁𝑆

𝛼𝑖
⇌
𝛽𝑖
𝑆Interior

𝑁𝑆

𝛼𝑏
⇌
𝛽𝑠

𝑆
Boundary



Phenomenological Ca cycling equations

𝐽𝑟𝑦𝑟
𝑏 : RyR flux

𝐽𝑟𝑦𝑟
𝑏 = 𝑔 ⋅ 𝑛𝑏 ⋅ (𝑐𝑠𝑟𝑏 − 𝑐𝑏)

Ca fluxes

𝐽𝐶𝑎: L-type Ca current

𝐽𝑥: NaCa exchanger 

𝐽𝑢𝑝: SERCA pump

𝐽𝑑: diffusion into the cell interior

𝑑𝑐𝑏
𝑑𝑡

= 𝛽 𝑐𝑏 ൯𝐽𝑟𝑦𝑟
𝑏 − 𝐽𝑢𝑝 𝑐𝑏 + 𝐽𝑥 + 𝐽𝑖𝑐𝑎 − 𝐽𝑑

ቇ𝑣𝑠𝑟
𝑏
𝑑𝑐𝑠𝑟𝑏
𝑑𝑡

= 𝛽 𝑐𝑠𝑟
𝑏 (−𝐽𝑟𝑦𝑟

𝑏 + 𝐽𝑢𝑝 − (𝑐𝑠𝑟𝑏 − 𝑐𝑠𝑟𝑖)/𝜏𝑠𝑟

SR

Boundary region

𝐽𝑟𝑦𝑟
𝑏

𝐽𝑢𝑝

𝐽𝐶𝑎

𝐽𝑥

𝑐𝑠𝑟𝑏𝑐𝑏

𝐽𝑑

𝑐𝑠𝑟𝑏 & 𝑐𝑏:   Average Ca concentration in SR and
cytosol of boundary region.



Ca fluxes

𝐽𝑢𝑝: SERCA pump

𝐽𝑟𝑦𝑟
𝑖 : RyR flux

𝐽𝑟𝑦𝑟
𝑖 = 𝑔 ⋅ 𝑛𝑖 ⋅ (𝑐𝑠𝑟 − 𝑐𝑖)

𝐽𝑑: diffusion into the cell interior

Phenomenological Ca cycling equations

𝑑𝑐𝑖
𝑑𝑡

= 𝛽 𝑐𝑖
𝑣𝑏
𝑣𝑖

ቁ(𝐽𝑟𝑦𝑟
𝑖

− 𝐽𝑢𝑝 + 𝐽𝑑

ቇ𝑣𝑠𝑟
𝑖
𝑑𝑐𝑠𝑟𝑖
𝑑𝑡

= 𝛽 𝑐𝑠𝑟𝑖 (−𝐽𝑟𝑦𝑟
𝑖 + 𝐽𝑢𝑝 + (𝑐𝑠𝑟𝑏 − 𝑐𝑠𝑟𝑖)/𝜏𝑠𝑟)

SR

Interior region

𝐽𝑟𝑦𝑟
𝑖

𝐽𝑢𝑝

𝑐𝑠𝑟𝑖𝑐𝑖

𝐽𝑑

𝑐𝑠𝑟𝑖 & 𝑐𝑖:   Average Ca concentration in SR and
cytosol.



Phenomenological modeling of spark rates

Rate of spark recruitment at boundary sites

𝛼𝑏 = 𝐴 |𝐼𝐶𝑎| 𝜙(𝑐𝑠𝑟𝑏)

𝐼𝐶𝑎: Ca entry due to L-type  Ca current  (graded release) 

Sensitivity to SR load 𝜙 𝑐𝑠𝑟𝑏 =
1

1 + Τ𝑐𝑠𝑟𝑏
∗ 𝑐𝑠𝑟𝑏

𝛾𝑠𝑟
𝛾𝑠𝑟 = 4

𝑐𝑠𝑟𝑏 = 800𝜇𝑀

𝛽𝑏 =
1

𝜏
𝜏 = 10 − 40𝑚𝑠 :    Average spark lifetime

Sparks extinguish at a rate: 



Recruitment of sparks at internal sites modeled phenomenologically

𝛼𝑖 = 𝑎 𝑓𝑏 𝑝𝑏 + 𝑏 𝑓𝑖 𝑝𝑖 𝜙(𝑐𝑠𝑟𝑖)

Phenomenological modeling of spark rates

𝑓𝑖: sensitivity to fraction of interior sparks
𝑓𝑏 𝑝𝑖 =

1

1 + Τ𝑝𝑖
∗ 𝑝𝑖

𝛾𝑖

𝑝𝑖
∗: threshold for Ca wave onset

𝑝𝑖 = 𝑛𝑖/𝑁:   fraction of internal sites with sparks

𝑓𝑏: sensitivity to fraction of interior sparks
𝑓𝑏 𝑝𝑏 =

1

1 + Τ𝑝𝑏
∗ 𝑝𝑏

𝛾𝑏

𝑝𝑏
∗ : threshold for boundary-interior interaction

𝑝𝑏 = 𝑛𝑏/𝑁:   fraction of internal sites with sparks



Results 

𝑡 (𝑚𝑠)

𝑉 𝑡

𝐶𝐿 = 300𝑚𝑠

𝜇𝑀 𝐶𝐿 = 500𝑚𝑠

𝑐𝑖
𝑐𝑏

Coupled to Grandi Human 
Atrial cell model (2011).

𝑡 (𝑚𝑠)

𝑉 𝑡

𝛾𝑏 = 5, 𝛾𝑖 = 8.



𝐶𝐿 = 300𝑚𝑠

𝑉 𝑡
𝑐𝑖(𝑡)

𝑡

Triggered waves cause intermittent APD perturbations

𝑉(𝑡)

𝑐𝑖(𝑡)

Isolated dog 
Atrial myocytes
Paced at 3.3Hz
Gusak et al. (AHA
poster, 2017).

Prolonged
AP

Experiments from Andy’s lab



𝐴𝑃𝐷

𝐶𝐿

(𝑚𝑠)
Last 30 beats after 
pacing for 200 beats.

𝑐𝑖

𝑡 (𝑚𝑠)

𝑐𝑖

𝑡 (𝑚𝑠)

APD perturbations are stochastic and rate dependent 



The problem problem:   Electrical couping in tissue eliminates beat-
to-beat APD fluctuations 

Why?

Electrical coupling averages voltage over a length scale 𝜉 ∼ 𝐷𝑉𝐶𝐿 ≈ 5𝑚𝑚

uncoupled

400 coupled cells

𝐴𝑃𝐷

𝑏𝑒𝑎𝑡 𝑛𝑢𝑚𝑏𝑒𝑟
𝐷𝑉 = 10−3𝑐𝑚2/𝑚𝑠



In the absence of synchronization APD variations tend to cancel

𝑉 𝑡
𝑐𝑖(𝑡)

𝑡

L S

Long (L) and short (S) APD will tend to cancel in a population 
of cells. 

Effectively, random Ca waves in cardiac tissue will lead to minimal beat-to-beat
Voltage fluctuations.



Can Ca waves be synchronized in tissue?

Answer:   YES!  Voltage can be used to synchronize release events over 
large populations of cells.      There are 2 distinct mechanisms:

Mechanism 1:   Cycle length variability

𝑉(𝑡)

𝑐𝑖

300𝑚𝑠 600𝑚𝑠
Triggered wave

SR Ca
𝜇𝑀



𝐶𝐿19 (𝑚𝑠)

Probability of 
triggered wave on
20𝑡ℎ beat

𝐶𝐿 of 19th beat
increased from 
basic 𝐶𝐿 = 300𝑚𝑠

Computed using
500 samples.

(on 20th beat)

Synchronization at beat 𝑛 + 1 due to prolonged CL
at beat 𝑛



Heterogeneous 1D cable 

210 coupled cells.  Only cells 80-130 have triggered waves. 

𝐴𝑃𝐷20

Cell number 

Cell paced at 𝐶𝐿 = 300𝑚𝑠.
19𝑡ℎ beat has 𝐶𝐿 =
450𝑚𝑠.

Cycle length variations in atrial tissue amplify the effect of triggered waves
in tissue:  highly arrhythmogenic.   Note:  effect in 3D will be even more
dramatic given that there are ∼ 106 coupled cells.



Synchronization due to triggered wave alternans

4𝑠

At rapid rates triggered waves can occur on alternate beats only

Failing dog hearts

Wasserstrom lab.



Triggered wave alternans

b

b

d

d

c
c

a
a

20μm

𝑐(𝑡)

𝑡 (𝑚𝑠)

(𝜇𝑀)



𝑉(𝑡)

𝑐𝑖

Good model for iso and
Caffeine data.

Internal sites release large Ca on alternate beats

Phenomenological model reproduces robust alternans response 

Effectively, APD restitution tends to synchronize stochastic Ca waves by providing
a global signal that favors wave nucleation on alternate beats.



Mechanism 2:  Phase synchronization of alternating triggered waves

APD variations synchronize triggered
Waves on cable on alternate beats.

Beat number 

APD of 10th cell in cable of 50 cells

Model with alternans parameters.
50 cells. 

𝑐𝑖
𝑚𝑎𝑥

Cells

Beat 10

𝑐𝑖
𝑚𝑎𝑥

Cells

Beat 60

𝑐𝑖
𝑚𝑎𝑥

Cells

Beat 100



Phase synchronization of triggered waves in a 1D cable of cells 

Gradual formation of discordant alternans due to phase synchronization of
triggered waves.        Similar mechanism in different context proposed in Daisuke et al. 2013.  

𝜉 ∼ 5𝑚𝑚

𝑏𝑒𝑎𝑡 200

𝑏𝑒𝑎𝑡 201

𝐴𝑃𝐷

𝑏𝑒𝑎𝑡 41

𝑏𝑒𝑎𝑡 40

𝐴𝑃𝐷

400 cell cable 



Summary 

1. Stochastic Ca waves can synchronize in tissue due to interactions
between voltage and Ca.    At the end it is precisely the voltage
that drives synchronization!

2. Alternating triggered waves occur at rapid rates and are especially 
arrythmogenic since they naturally synchronize over large length 
scales (electrotonic length). 

3. Regions of synchronized triggered Ca waves may underlie the initiation and 
maintenance of atrial fibrillation.   

THE END 



L-type Ca current Markov model can be integrated into population approach

Population of channels
facing sparks

𝐶𝑎 ∼ 100𝜇𝑀

Population of channels
With no sparks

𝐶𝑎 ∼ 0.1𝜇𝑀

Accounts for the different kinetics of Ca channels facing high and low Ca concentrations


