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Dark Sectors with Light Mediators

Standard ModelMediatorDark Matter

Review: Dark Sectors 2016 Workshop (1608.08632)
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Gauge Invariance

www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/

'f̄ i�5f = i'fLfR � i'f̄Lf̄R

*In Standard Model, these  
are totally different fermions  *

See, e.g. 
Bell et al. 1503.07874  
Kahlhoefer et al. 1510.02110  
Bell et al. 1612.03475  
Ko et al. 1701.04131 
+ many others
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How to UV complete?

1. ≥ 2 Higgs Doublet Model 
for example, the next-to-minimal SUSY SM 
e.g. Ipek et al. 1404.3716, Berlin et al. 1502.06000 

2. Heavy Vector-like Fermions  
… then decouple them 
Fan et al. 1507.06993
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How to UV complete? This talk.
3. Non-minimal composite Higgs  

Gauge-singlet pseudoscalars 
… predictive, but heavy states decouple  
… connects to Hierarchy problem 

Dark Matter Mediator Higgs

strong dynamics

SM singlet

Standard  
Model

fermion 
coupling
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Composite Higgs

Kaplan & Georgi ’84 (Phys. Lett B136 & Phys. Lett. B145)
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Composite Higgs + Singlet

Kaplan & Georgi ’84 (Phys. Lett B136 & Phys. Lett. B145)

Singlet as DM: Frigerio et al. 1204.2808, Marzocca et al. 1404.7419, Fonseca et al.  
1501.05957, Carmona et al. 1504.00332, Antipin et al.1503.08749 , Related: Poland & 
Thaler 0808.1290; Asano and Kitano 1406.6374

Minimal Composite Higgs Next-to-Minimal Composite Higgs

Gauged symmetry in blue
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Explicit & Electroweak Breaking

Loops of gauge bosons, fermions generate 
electroweak-breaking Higgs potential

FT & Csaki 1602.04228, adapted from M. Safari’s Ph.D thesis 

explicit 
breaking SM interactions  

misalign vacuum

tuning parameter  
decoupled: ξ = 0  

natural: ξ = 1

 
EWPO: ξ  ≪ 1 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Partial Compositeness

Elementary fields are not 
SO(6) multiplets, mix with 
composite operators.

Model rOq rOt rOb
rO`

rO⌧ y⌘t̄t y⌘b̄b y⌘⌧̄⌧

Trivial 6 2
3 ,�

1
3

1 2
3

1
�

1
3

6�1 1�1

Top 6 2
3

mt

f

�t
p
1� ⇠

Bottom 6
�

1
3

mb

f

�b
p
1� ⇠

Tau 6�1
m⌧

f

�⌧
p
1� ⇠

Table 1: Standard Model fermion embeddings into so(6) ⇥ u(1)
X
. The trivial choice generates

Yukawa couplings to the Higgs but not the mediator. For the three models considered in this
manuscript (top, bottom, tau), we list the distinguishing right-handed fermion representation;
all other representations are the same as the trivial model. This generates a Yukawa interaction
between the one flavor and the mediator, listed on the right-hand side of the table.

• The left-handed fermions must appear as non-trivial so(6) representations in order to trans-
form as electroweak doublets. A simple choice is to embedded these as so(6) fundamentals.

• The right-handed fermion embeddings, on the other hand, are a model-building choice. One
may generate the Standard Model Yukawa couplings with either trivial or non-trivial so(6)
representations, but only non-trivial so(6) representations of the right-handed fermion gen-
erate a coupling to the mediator.

In this manuscript we focus on a set of simple embeddings in which the mediator only couples
linearly to one Standard Model fermion family: either the top (t-option), bottom (b-option) or tau
(⌧ -option). In other words, we restrict to the case where only a single right-handed fermion type
has a non-trivial so(6) representation. Table ?? summarizes the embeddings for each of these three
cases. The phenomenology associated to each case is exemplifies the variety of possible scenarios
with a composite dark sector mediator.

3.1 Trivial Embedding

First we present the trivial embedding wherein the Standard Model fermions are packaged in the
minimal representations required to satisfy their gauge quantum numbers. This choice generates
Yukawa couplings to the Higgs boson but no interaction with the mediator.

The electroweak doublets [Flip: note that we’re picking reps of the operators O, not the elementary fermions]

must be contained in non-trivial so(6) representations. The simplest choice is the vector represen-
tation, 6. The decomposition under so(4) ⇠= su(2)L ⇥ su(2)R is [Flip: oplus]

6 = 4+ 1+ 1 = (2,2) + (1,1) + (1,1) . (3.3)

The (2,2) accommodates a su(2)
L
doublet. The u(1)

X
charge is fixed by matching the Standard

Model hypercharge based on the electromagnetic charge QEM,

Y = QEM � T 3
L
= T 3

R
+X , (3.4)

so that X = QEM for each of the up, down, and charged lepton Yukawa terms.
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1. Flavor constraints suggest that the Standard Model fermions are partially composite,
meaning that the elementary states mix linearly with a fermionic composite operator.

2. On the other hand, we assume that a dark matter bilinear mixes with a composite operator.
This bilinear mixing ties the dark matter mass to the symmetry breaking scale, f .

We summarize features of each type of mixing here and present details in Sections 3 and 4.

2.5.1 Partially composite fermions

Partial compositeness is when an elementary fermion  mixes with a composite operator O that
interpolates a fermionic bound state with the same quantum numbers [7]: [Flip: � to distinguish this

from quartic, and also in equation below.]

L � � ̄O + h.c. ) . (2.10)

This is a fermionic analog to photon–⇢ mixing in the Standard Model. The hierarchy of Yukawa
couplings is generated by the renormalization group flow of operators with slightly di↵erent anoma-
lous dimensions in the uv [8, 9]. These dynamics are dual to ‘anarchic flavor’ in a warped extra-
dimension [10–12].

To pedagogically demonstrate the symmetry structure of this scenario, we momentarily ignore
hypercharge and distinguish two su(2) groups identified with electroweak symmetry:

1. su(2)L: the gauged electroweak symmetry of the elementary fermions  .
2. su(2)0

L
⇢ so(6): a subgroup of the global symmetry in the composite sector.

The mixing between these two groups in (2.10) explicitly breaks them to the diagonal combination,

su(2)
L
⇥ so(6) ! su(2)

L
. (2.11)

A simple way to understand this is to introduce an order parameter vaI with indices a and I for
su(2)

L
and so(6) respectively. This order parameter projects the composite operator O onto the

subset of su(2)0
L
components that mix with  . We may use this order parameter as a spurion to

embed the elementary fermion into an field with so(6) indices,  (x) =  a(x)vaI , so that we may
write (2.10) in a manifestly so(6) invariant way:

L � � ̄O + h.c. ! � ̄a�aIO
I + h.c. = �  ̄IO

I

 
+ h.c. . (2.12)

Given a choice of so(6) representation for  —or equivalently, vaI—the relation (2.12) allows us
to determine how the components of the elementary fermion  a mix with heavy composite states
O

I

 
(x). This, in turn, determines which fermions interact with the ⌘. We categorize these in-

teractions for simple embeddings in Section 3. When including u(1)
X
, we assume that the order

parameters � also carry the X-charge of the embedding.

2.5.2 Fermion bilinear mixing

In contrast to the partial compositeness of the Standard Model fermions, we mandate that Dirac
dark matter, �, couples to the strong sector through a bilinear interaction,

L � y��̄L�RO� + h.c. ) , (2.13)
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DOUBLET

SU(2)L SU(2)R

ELEMENTARY

COMPOSITE

PHYSICAL SM  
FERMIONS

HEAVY
m⇤

M
A

SS tL & bL  
only

6 fermionic 
composites

v
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Non-linear realization

⌃ = eiT
A⇡A(x)/f⌃0



f l i p . t a n e d o @ u c r . e d u 22KITP:  DM DETECTION & DETECTABILITY
 11

An SO(6) basis

Reminder: SO(6) ⊃ SO(4) ≃ SU(2)L x SU(2)R  (custodial symmetry)

MEDIATOR 
U(1) SYM

BROKEN

⌃0 = (0, 0, 0, 0, 0, 1)TVEV
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What the theory looks like

NLΣM

dark matter 
embedding 

visible matter 
embedding 
CHOICES  LEAD TO  
-  HIGGS POTENTIAL 
-  MEDIATOR POTENTIAL

CHOICES  LEAD TO 
MEDIATOR POTENTIAL

IRREDUCIBLE  
INTERACTIONS

OUTPUTS:  
MEDIATOR MASS AS A  
FUNCTION OF DISCRETE  
CHOICES AND DM MASS

COMPOSITE HIGGS  
SPECIFY BREAKING SCALE f  
GIVES MEASURE OF TUNING

Use Σ and spurions to write invariants
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Non-linear Σ Model

Figure 1: Symmetry structure of the next-to-minimal composite Higgs scenario. [Flip: Need to update

to include u(1)⌘ shift symmetry.]

We identify ⌘, the (1,1) singlet, as the mediator between the Standard Model and dark sector.
We assume an additional global u(1)

X
symmetry that ensures that sm fields have the correct

hypercharge assignments, with Y = T 3
R
+X [3]. This symmetry structure is shown in Fig. 1.

The matrix of Goldstones that parameterizes the coset so(6)/so(5) is conveniently expressed
in unitary gauge so that the longitudinal modes of the electroweak gauge bosons do not appear as
independent degrees of freedom,

U =
1

f

0

BBBB@

f 3⇥3

f �
h
2

f+
p

f2�h2�⌘2
�

h⌘

f+
p

f2�h2�⌘2
h

�
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p
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p
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1

CCCCA
, (2.1)

[Flip: Comment on connection to trigonometric expressions.] where empty entries are zero and we use the
generator basis in Appendix A.1. The decay constant, f , is the scale of the global symmetry
breaking. In this basis, the so(4) subgroup acts on the upper-left 4⇥ 4 block. The upper-left 5⇥ 5
block corresponds to the unbroken so(5) directions. To obtain the nonlinear description of the
coset space, we project out these unbroken directions by acting with U on the order parameter of
the symmetry breaking, ⌃0 = (0 0 0 0 0 1)T . We then define the dimensionless field

⌃ = U⌃0 =
1

f
(0 0 0 h ⌘

p
f 2 � h2 � ⌘2)T , (2.2)

which we use to construct so(6) invariants.
The ⌘ is associated with a u(1)

⌘
shift symmetry that rotates the 5–6 components of the 6

representation. This commutes with the generators of su(2)
L
⇥ su(2)

R
⇢ so(4), which only act on

the upper four components of the 6. Additional interactions that explicitly break these symmetries
give masses to these would-be (or pseudo-) Goldstone bosons.

To leading order in a derivative expansion, the kinetic terms and nonlinear interactions between
the Goldstones is encoded in the invariant operator

f 2

2
|Dµ⌃|

2 =
(@µh)2

2
+

(@µ⌘)2

2
+

1

2

(h@µh+ ⌘@µ⌘)
2

f 2 � h2 � ⌘2
+

g2

4
h2

✓
W+

µ
W µ� +

1

2 cos2 ✓W
ZµZ

µ

◆
. (2.3)

Explicit symmetry breaking generates a loop-level potential that induces a Higgs vacuum expec-
tation value (vev), hhi = v = 246GeV. This, in turn, fixes the electroweak scale and gives mass to

3
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NONLINEAR
HIGGS-GAUGE  
INTERACTIONS

h ! v + h
p

1� ⇠

HIGGS POTENTIAL GIVES:
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η-SM coupling: right-handed embedQuark embedding. The relation (3.4) requires that the elementary quark doublet is embedded
in two di↵erent ways to permit both types of quark Yukawas:

(2,2) 2
3
: QI = qLa�

aI

q
= bL�

I

bL
+ tL�

I

tL
(2,2)

�
1
3
: Q0I = qLa�

0aI

q
= bL�

0I

bL
+ tL�

0I

tL
, (3.5)

where the subscript labels X-charge. With respect to the basis in Appendix A, the embedding
parameters are

�bL =
1
p
2

�
i +1 0 0 0 0

�T
, �tL =

1
p
2

�
0 0 i �1 0 0

�T
(3.6)

�0

bL
= �

1
p
2

�
0 0 i 1 0 0

�T
�0

tL
=

1
p
2

�
�i 1 0 0 0 0

�T
. (3.7)

These fix the mixing of qL with the corresponding composite fermionic operators to be �qQ̄IO
I

q
+

�0

q
Q̄0

I
O

0I

q
, with so(6) index I = 1, . . . , 6 and global Abelian chargesX[Oq] = 2/3 andX[O0

q
] = �1/3.

The right-handed quarks, in turn, are embedded into so(6) singlets with Abelian charges fixed by
hypercharge,

1 2
3
: T = tR 1

�
1
3
: B = bR . (3.8)

The quark Yukawa interactions in the trivial model are encoded in so(6) ⇥ u(1)X-invariant La-
grangian terms built out of these embeddings and the ⌃ field in (2.2),

L � ytf(Q̄⌃)T + ybf(Q̄
0⌃)B + h.c. = �

yt
p
2
ht̄LtR �

yb
p
2
hb̄LbR + h.c. , (3.9)

so that yt and yb are identified with the yht̄t and yhb̄b Yukawa interactions, respectively.

Lepton embedding. The left-handed lepton doublet and right-handed ⌧ are embedded as

(2,2)�1 : LI = `La�
aI

`
= ⌧L�

I

⌧L
+ ⌫L�

I

⌫
⌧
L

1�1 : ⌅I = ⌧R , (3.10)

with embedding parameters

�⌧L = �
1
p
2

�
0 0 i 1 0 0

�T
�⌫⌧L =

1
p
2

�
�i 1 0 0 0 0

�T
. (3.11)

This generates the usual lepton Yukawa coupling with yh⌧̄ ⌧ = y⌧ ,

L � y⌧f(L̄⌃)⌅+ h.c. = �
y⌧
p
2
h⌧̄L⌧R + h.c. . (3.12)

Properties of the trivial embedding. It is clear that the Yukawa couplings for lighter up-type
quarks are suppressed by the degree of partial compositeness so that we ignore these interactions for
the remainder of this study. The magnitude of the yt,b,⌧ are given by the rules of näıve dimensional
analysis, as summarized in Appendix A.3,

yt ⇠
�q�t

g⇤
yb ⇠

�0

q
�b

g⇤
y⌧ ⇠

�`�⌧

g⇤
, (3.13)

where g⇤ is the typical coupling between composite resonances and is related to the mass of those
resonances by m⇤ ⇠ g⇤f . Observe that neither the quark nor lepton embeddings break break the
u(1)⌘ symmetry under which ⌘ shifts since that acts on the two lowest components of the vector of
so(6) as shown in (A.4). This means that the fermions in the trivial embeddings carry zero u(1)⌘
charge and do not couple to the mediator. In the models that follow, the right-handed fermions are
embedded into non-trivial representations that allow them to interact with the mediator, breaking
the ⌘ shift symmetry and generating a potential for ⌘.
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quarks are suppressed by the degree of partial compositeness so that we ignore these interactions for
the remainder of this study. The magnitude of the yt,b,⌧ are given by the rules of näıve dimensional
analysis, as summarized in Appendix A.3,

yt ⇠
�q�t

g⇤
yb ⇠

�0

q
�b

g⇤
y⌧ ⇠

�`�⌧

g⇤
, (3.13)

where g⇤ is the typical coupling between composite resonances and is related to the mass of those
resonances by m⇤ ⇠ g⇤f . Observe that neither the quark nor lepton embeddings break break the
u(1)⌘ symmetry under which ⌘ shifts since that acts on the two lowest components of the vector of
so(6) as shown in (A.4). This means that the fermions in the trivial embeddings carry zero u(1)⌘
charge and do not couple to the mediator. In the models that follow, the right-handed fermions are
embedded into non-trivial representations that allow them to interact with the mediator, breaking
the ⌘ shift symmetry and generating a potential for ⌘.

9

xf(2,2)2/3 : T = (0 , 0 , 0 , 0 , i�t tR , tR)
T

CHOICE: δ  PARAMETER

L � ytf(Q̄⌃)(⌃TT ) = � ytp
2
ht̄LtR

 s

1� h2

f2
� ⌘2

f2
+ i�t

⌘

f

!



f l i p . t a n e d o @ u c r . e d u 22KITP:  DM DETECTION & DETECTABILITY
 15

Dark matter: same thing again?

Why not use this again?

O�

Better option: bilinear mixing
TECHNICOLOR-LIKE MASS GENERATION

Doesn’t work for visible matter (flavor)  
But preserves 

Sets the mass scale to f

� ! ��

Why should such a particle be stable?

Introduce dark matter as elementary Dirac fermion
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Dark Matter: bilinear coupling

X = (0 , 0 , 0 , 0 , i �̄L�R , �� �̄L�R )T

L � �y�f
�
⌃TX

�

VECTOR &  
SINGLET  

+ HIGGS COUPLINGS

��

L � �y0�f �̄L�R
SINGLET

VECTOR
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What does this buy us?

NLΣM

dark matter 
embedding 

visible matter 
embedding 
CHOICES  LEAD TO  
-  HIGGS POTENTIAL 
-  MEDIATOR POTENTIAL

CHOICES  LEAD TO 
MEDIATOR POTENTIAL

IRREDUCIBLE  
INTERACTIONS

OUTPUTS:  
MEDIATOR MASS AS A  
FUNCTION OF DISCRETE  
CHOICES AND DM MASS

COMPOSITE HIGGS  
SPECIFY BREAKING SCALE f  
GIVES MEASURE OF TUNING



f l i p . t a n e d o @ u c r . e d u 22KITP:  DM DETECTION & DETECTABILITY
 18

Dark Sector Couplings

These are determined once you specify the order 
parameters of explicit breaking.

dangerous 
coupling
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Mediator Coupling

Fermion loops give mediator mass 
Interaction strength ⟺ mediator mass

So finding a thermal relic is … kind of a miracle.
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Mediator Mass

Standard Model Approximate contribution to m2
⌘
from fermion loops

tR (Ot) (�2
t
� 1)

3yt
8⇡2

m3
⇤

f
⇡ (1 TeV)2

⇣ m⇤

3TeV

⌘3
✓

TeV

f

◆�
�2
t
� 1

�

bR (Ob) (�2
b
� 1)

3yb
8⇡2

m3
⇤

f
⇡ (130 GeV)2

⇣ m⇤

3TeV

⌘3
✓

TeV

f

◆�
�2
b
� 1

�

⌧R (Ob) (�2
⌧
� 1)

y⌧
8⇡2

m3
⇤

f
⇡ (60 GeV)2

⇣ m⇤

3TeV

⌘3
✓

TeV

f

◆�
�2
⌧
� 1

�

Dark Matter Approximate contribution to m2
⌘
from dark matter loops

Vector (O�) (1� �2
�
)
y2
�
m2

⇤

8⇡2
⇡ (70 GeV)2

⇣ m⇤

3 TeV

⌘2 ⇣ y�
0.2

⌘2 �
1� �2

�

�

Singlet (O0

�
)

m(1)
� m(6)

� m2
⇤

8⇡2f 2
⇡ (10 GeV)2

⇣ m⇤

3 TeV

⌘2
✓
1 TeV

f

◆2
"

m(1)
� m(6)

�

(25 GeV)2

#

Table 2: [Flip: Say that the doublets don’t contribute.] [Flip: Also check for corrections] [Flip: Dark matter. Check

overall sign?] Assume �q ⇠ �t ⇠
p
ytg⇤.

(a) W loop (b) LH loop (c) RH loop (d) DM loop
with singlet

(e) DM loop
with fundamen-
tal

Figure 2: Contributions to the Goldstone masses diagrammatically.

13

� = 1 U(1)⌘corresponds to unbroken  

CHOOSE ONE NON-TRIVIAL REP



f l i p . t a n e d o @ u c r . e d u 22KITP:  DM DETECTION & DETECTABILITY
 21
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Figure 2: Contributions to the Goldstone masses diagrammatically.
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� = 1 U(1)⌘corresponds to unbroken  

CHOOSE ONE NON-TRIVIAL REP
�SM

��

X = (0 , 0 , 0 , 0 , i �̄L�R , �� �̄L�R )T

(2,2)2/3 : T = (0 , 0 , 0 , 0 , i�t tR , tR)
Txf
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Punchline

New completion of pseudoscalar mediator 
Connects dark matter and Higgs naturalness  
Small number of parameters + discrete choices 
In some sense, variant of “WIMP” 

Dark Matter Mediator Standard  
ModelHiggs

composite

fermion 
coupling
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EXTRA SLIDES
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Pseudoscalar Mediators

Indirect detection:  
Boehm et al. 1401.6458  
FT & UCI folks 1404.6528, 1503.05919  
Berlin et al. 1502.06000

�
X̄ i�5X

� �
q̄ i�5q

�

�spin dependent / q2 ⇥ q2

�spin independent = 0 .

On-Shell Simplified Options
Require: s-wave annihilation:

. . . .

Med. S (P) V (A) S (P) V (A)
ℓ-Wave p (p) s (s) p (s) p (p)

mχ ≈ 80 GeV ≈ 80 GeV ≈ 120 GeV ≈ 120 GeV

Further Requirements:

2mχ >

⎧
⎪⎨

⎪⎩

2mV for a spin-1 mediator

3mϕ for a spin-0 mediator

Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 22/47...

22/47

s-wave annihilation in s-channel or 
to three on-shell pseudoscalars

assume 
Dirac X

suppressed 
direct detection

see, e.g.  
Kumar & Marfatia 1305.1611
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SO(5)/SO(4) & the Standard Model
described by usual minimal composite Higgs

partially 
composite 

SM fermions

SM gauging

“5D flavor”
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Naive Dimensional Analysis

Georgi & Manohar ’84;see e.g. Panico & Wulzer 1506.01961 for a review

bosons fermions
mass scale of  
new resonances

one scale, one coupling ansatz

scaling from: mass and ℏ dimensional analysis

characteristic  
resonance coupling

The interactions of the Goldstone fields are determined by taking the linear field ⌃ = U(x)⌃0,
with ⌃0 the symmetry breaking direction, and writing down SO(6)-invariant operators.

A.3 Näıve Dimensional Analysis

Naive Dimensional Analysis (NDA) is a tool to estimate the size of terms in an e↵ective theory
and is particularly well suited for estimating natural sizes the interactions of a states belonging to
a strongly coupled sector [78–80]. The rules of NDA boil down to careful accounting of factors of
4⇡ and are derived carefully in section 3.1 of [5] and [81]. We employ NDA to estimate the size of
Yukawa couplings for partially composite fermions.

Ref. [5] describes NDA as a limit of “one scale, one coupling” power counting. The nonlinear
� model realizes this paradigm: the e↵ective theory is characterized by the scale, m⇤, at which
new strong sector resonances appear and a characteristic coupling g⇤ of strongly coupled states.
It is useful to step away from natural units and restore ~ as a dimensionful parameter. In this
case, [L] = [~]M4 so that fields carry ~-dimension [�] / [~]1/2 in addition to their mass dimension.
We note that [g⇤] = [~]�1/2, so that couplings carry an ~-dimension. This tells us that e↵ective
Lagrangians take the form

L =
m4

⇤

g2
⇤

L̂

✓
@

m⇤

,
g⇤�

m⇤

,
g⇤ 

m3/2
⇤

◆
, (A.6)

where � and  are general strong sector spin-0/1 and spin-1/2 fields, respectively. L̂ is a dimension-
less function of dimensionless arguments. Since the Goldstone fields ⇡(x) appear in ⌃ = U(x)⌃0

in the combination ⇡(x)/f , we may thus identify

g⇤ =
m⇤

f
. (A.7)

Thus the characteristic coupling of the strong sector is the ratio of the heavy scale to the Goldstone
decay constant. Note that f carries both mass and ~ dimension: [f ] = [

p
~]M . The validity of

the perturbation expansion implies that the characteristic coupling g⇤ may take values up to 4⇡;
this separation of scales between m⇤ and f is critical, for example, in the validity of the chiral
Lagrangian to predict pion scattering amplitudes. When one also accounts for the multiplicity of
matter in the confining sector, N , the NDA estimate for the characteristic coupling is

g⇤ '
4⇡
p
N

, (A.8)

where the large N limit corresponds to a theory that is holographically dual to five-dimensional
theories.

A.4 Partial Compositeness

We use NDA to estimate the Yukawa couplings between the third generation Standard Model
fermions and the Goldstone bosons. Following the standard composite Higgs constructions, we
assume that the third generation fermions  mix with fermionic operators O in the composite
sector,

L � � 
m

5/2�[O ]
⇤

g⇤
 ̄O + h.c. (A.9)
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with ⌃0 the symmetry breaking direction, and writing down SO(6)-invariant operators.
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less function of dimensionless arguments. Since the Goldstone fields ⇡(x) appear in ⌃ = U(x)⌃0
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Thus the characteristic coupling of the strong sector is the ratio of the heavy scale to the Goldstone
decay constant. Note that f carries both mass and ~ dimension: [f ] = [

p
~]M . The validity of

the perturbation expansion implies that the characteristic coupling g⇤ may take values up to 4⇡;
this separation of scales between m⇤ and f is critical, for example, in the validity of the chiral
Lagrangian to predict pion scattering amplitudes. When one also accounts for the multiplicity of
matter in the confining sector, N , the NDA estimate for the characteristic coupling is
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where the large N limit corresponds to a theory that is holographically dual to five-dimensional
theories.

A.4 Partial Compositeness

We use NDA to estimate the Yukawa couplings between the third generation Standard Model
fermions and the Goldstone bosons. Following the standard composite Higgs constructions, we
assume that the third generation fermions  mix with fermionic operators O in the composite
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breaking scale


