Searching for the Darkest Galaxies

Keith Bechtol LSST

(w/ many results from DES)

KITP Seminar
18 May 2018

Milky Way
$\mathrm{M}_{\star}=\sim 6 \times 10^{10} \mathrm{Mo}$

Large Magellanic Cloud

$$
M_{\dot{\lambda}}=\sim 1.5 \times 10^{9} \mathrm{Mo}
$$

Small Magellanic Cloud

$M_{\star \times}=\sim 5 \times 10^{8} \mathrm{Mo}$

Sculptor

In many respects it appeared to be unlike any known stellar organization. The finding more recently of a similar system in Fornax ... suggests that a description of these objects may be of general interest.

Segue 1 $\mathrm{M}_{\star}=\sim 300 \mathrm{Mo}$
Credit: Marla Geha

Ultra-faint galaxies are discovered as arcminute-scale statistical over-densities of individually resolved stars

Segue 1
$\mathrm{M}_{\star \text { t }}=\sim 300 \mathrm{Mo}$
Credit: Marla Geha

Spectroscopic Follow-up: Stellar Kinematics

Velocity dispersion \sim few km/s

Measure Doppler shifts
of individual stars
of individual stars
Satellite member stars are distinguished by their distinct locus in velocity-space

The velocity dispersion is too large to be explained by the stellar mass alone

Segue 1 has mass-to-light ratio of >1000 within the half-light radius!
$z=0.0$

80 kpc

"Galaxy" Defined

A galaxy is a gravitationally bound collection of stars whose properties cannot be explained by a combination of baryons and Newton's laws of gravity.

Willman \& Strader 2012, AJ, 144, 76

"Galaxy" Defined

A galaxy is a gravitationally bound collection of stars whose properties cannot be explained by a combination of baryons and Newton's laws of gravity.

Willman \& Strader 2012, AJ, 144, 76

"Galaxy" Defined

A galaxy is a gravitationally bound collection of stars whose properties cannot be explained by a combination of baryons and Newton's laws of gravity.

Willman \& Strader 2012, AJ, 144, 76

Segue 2 has an upper limit on velocity dispersion ($<2.2 \mathrm{~km} \mathrm{~s}^{-1}$), but exhibits metallicity dispersion characteristic of a galaxy; suggests that supernova ejecta was contained

Kirby et al. 2013, ApJ, 770, 16

In dark matter context, galaxies are born in dark matter halos

Total Masses of Ultra-faint Galaxies (?)

For galaxies with a small number of velocity measurements (tens), the most robustly constrained quantity is the total mass within the stellar 3D half-light radius - a small fraction of the total halo mass

Mass-to-light ratio of ultra-faint galaxies within full halo extent could be much larger than mass-to-light ratio within the half-light radius (the typically quoted quantity)

Wolf et al. 2010, MNRAS, 406, 1220

Milky Way Satellite Discovery Timeline

Sample DES Imaging

400M objects detected in coadd images from DES Y1-Y3

$\checkmark 1$ Image Vewer

DR1 - All - DESO108+0209

62 science DECam CCDs are each 0.30 deg $\times 0.15 \mathrm{deg}$

Stellar Density Field from First-year Dark Energy Survey Data

THE
$\int^{\text {Reticulum }}$
NGC 1851
d^{272}

Union of Search Strategies

"Primeval" Stellar Populations of Ultra-faint Galaxies

Deep Hubble imaging confirms extremely old (~13 Gyr) and metal poor stellar populations ($<10^{-2}$ Solar)

Low Neutral Gas Content

Nine dSphs found in first-year DES data found to have low neutral gas content, similar to previously known dSphs around the Milky Way

Galaxies beyond Milky Way virial radius tend to be more gas rich than those within

A Representative Search Algorithm

(1) Filter in CMD-space using isochrone for old and metal-poor stellar population

Advantages

Simple, fast, relatively model-independent
(2) Smooth with spatial kernel

Willman 2010

Likelihood Formalism

Unbinned Poisson Likelihood

Membership Probabilities

Total number of member stars

$$
\log \mathcal{L}=-f \lambda+\sum_{i}\left(1-p_{i}\right)
$$

Fraction of all member stars that are observable in survey

Satellite PDF
$p_{i} \equiv \frac{\lambda u_{i}}{\lambda u_{i}+b_{i}}$

Field density
(typically few \%)

Pipeline Steps

1. Scan for seeds
2. Characterize seeds

Likelihood Formalism: Field Model

Taking survey depth into account

Survey Geometry and depth
(mag)

Color-magnitude diagram of "field stars" ($\mathrm{mag}^{-2} \mathrm{deg}^{-2}$)

Likelihood Formalism: Satellite Model

Searching for a population of stars consistent with known ultra-faint dwarfs (i.e., metal-poor, 10+ Gyr old)

Significance Maps

Color scale indicates significance (likelihood ratio)

At single distance...

...scanning in distance

MCMC Parameter Estimation

Membership Probabilities in Action

Example: Reticulum II

High membership probability Lower membership probability

Usually Discovered as "Candidate" Ultra-faint Galaxies

Bechtol et al. 2015
arXiv:1503.02584
Is it a genuine physical system? e.g., "Phoenix II" / DES J2339.9-5424

Mutlu-Pakdil et al. 2018 -0.4-0.2 0.0 0.2 0.4 0.6 arXiv:1804.08627

Usually Discovered as "Candidate" Ultra-faint Galaxies

Is it a
dark-matter-dominated dwarf galaxy? e.g., "Tucana III"

Simon et al. 2017 arXiv:1610.05301

Aside: Similar Techniques Used to Discovery New Stellar Streams

Selecting stars in intervals of increasing heliocentric distance

Shipp et al. 2018
arXiv:1801.03097

11 new stellar streams, 4 previously known streams
Generally more distant (out to 50 kpc) and lower surface brightness (~ 33 mag $^{\text {arcsec }}{ }^{-2}$) than previously known streams

Dynamical tracers of Milky Way gravitational potential and dark matter substructures

Our Incomplete View of the Least Luminous Stellar Systems

Two new ultra-faint galaxy candidates found in first 300 deg 2 of Hyper-Suprime Cam SSP data ($<1 \%$ of 4π celestial sphere) that are likely undetectable in any previous survey

Homma et al. 2017 arXiv:1704.05977

LSST might discover tens to hundreds of similar ultra-faint galaxy candidates

Our Incomplete View of the Least Luminous Stellar Systems

Two new ultra-faint galaxy candidates found in first 300 deg 2 of Hyper-Suprime Cam SSP data ($<1 \%$ of 4π celestial sphere) that are likely undetectable in any previous survey

LSST might discover tens to hundreds of similar ultra-faint galaxy candidates

Our Incomplete View of the Least Luminous Stellar Systems

THE
"Feeble giant"
Half-light radius ~ 31 arcmin
Torrealba et al. 2016
arXiv:1601.07178
"Nine tiny star clusters"
Half-light radius < 1 arcmin
Torrealba et al. 2018
arXiv:1805.06473

DES Y3 Survey Selection Function Analysis Pipeline

1. Inject ensemble of simulated satellites into actual DES data at the catalog level with realistic photometric errors, etc.
2. Run multiple search algorithms on actual data and injected satellites
3. Apply same criteria to candidates from real data and simulation
4. Train survey selection function to predict detectability for arbitrary set of intrinsic satellite structural parameters and location with respect to survey footprint
5. Forward-fold cosmological models for the Milky Way satellite population through the survey selection function

- see Ethan Nadler's talk on Monday!
w/ Alex Drlica-Wagner, Sid Mau, Ethan Nadler, Risa Wechsler, ++

Why we don't detect some luminous and high surface brightness satellites

Surface brightness <27 mag arcsec- ${ }^{-2}$ and >50 stars at $\mathrm{g}<24$

Star hole!

Simulated Satellite Detectability

The detectability is somewhat challenging to visualize in a given two-dimensional projection into parameter space. However, one can see that the inferred sensitivity seems to match well with the actual detected MW satellite population, with the exception of the two HSC satellites (HSC is deeper than DES)

Training the Survey Selection Function

Use random forest to classify whether objects would be detected Currently training on \{magnitude, physical size, distance\}

DES Y3 Satellite Galaxy Search Sensitivity

Detection probabilities for individual satellites (i.e., each point is a single simulated satellite) Note that a given panel shows a 2D projection of a higher dimensional parameter space

DES Y3 Satellite Galaxy Search Sensitivity

Average detection probabilities (binned in regions of parameter space) Note that a given panel shows a 2D projection of a higher dimensional parameter space

Previewing Challenges of the LSST Era

Detection by resolved and diffuse light

Star/galaxy separation challenge

HSC-SSP DR1 SXDS Ultra-Deep Field
Comparable to LSST Wide-Fast-Deep 10 yr depth (27 th mag) 0.6 " seeing

Previewing Challenges of the LSST Era

Maximizing Discovery Potential

- All (?) of the ultra-faint galaxy discoveries to this point have been made with ground-based wide-area optical imaging data using search algorithms based on an isochrone selection in color-magnitude space and spatial kernels
- Additional information that might be used:
- [Line-of-sight velocities]
- [Wide-area space-based imaging]
- Variability (e.g., RR Lyrae stars)
- Diffuse light (not resolved into individual stars)
- Multi-band photometry to remove unresolved (point-like) galaxies and select metal-poor stars
- Proper motions

Tucana III Stellar Stream: Recognizing the Member Stars

Tucana III Stellar Stream:

Recognizing the Member Stars

Stellar colors allow metallicity estimate

Metal Rich Milky Way Disk Stars

Metal Poor Milky Way Halo Stars

Li et al. 2018 arXiv:1804.07761

Color Selections for Stars

Optical bands
Galaxies vs Stars

HSC-SSP DR1 SXDS Ultra-Deep Field
Comparable to LSST Wide-Fast-Deep 10 yr depth ($27^{\text {th }}$ mag) 0.6 " seeing

Optical + NIR bands
 Galaxies vs Stars

Mehta et al. 2017 arXiv:1711.05280

Using RR Lyrae to Identify Substructures in the Milky Way Halo

At least one RR Lyrae (variable star standard candle) has been identified in every dSph with published time-series observations

Sparse sampling: total of ~ 50 DES observations distributed across 5 bands over 5 years (typical pulsation periods range from 0.25 to 0.8 days)

Using RR Lyrae to Identify Substructures in the Milky Way Halo

At least one RR Lyrae (variable star standard candle) has been identified in every dSph with published time-series observations

DES Candidate RR Lyrae in Fornax region

Color-coded by distance

Location in Color-Flux Space

Candidates are concentrated in specific region of color-flux space consistent with being RR Lyrae at the distance of Fornax

Using Proper Motions

Spectroscopic members (line-of-sight velocity)

Simon 2018
arXiv:1804.10230

Proper Motions

LSST Science Book

Cunningham et al. 2016

First sample of halo stars with measured 3D kinematics outside the solar neighborhood 13 main sequence stars at $\sim 25 \mathrm{kpc}$
$\mu\left[\right.$ mas $\left.\mathrm{yr} \mathrm{r}^{-1}\right]=0.21 \mathrm{vt}\left[\mathrm{km} \mathrm{s}^{-1}\right] / \mathrm{d}[\mathrm{kpc}]$

PAndAS

Martin et al. 2013 arXiv:1307.7626

Centaurus A
Crnojevic et al. 2016
NGC 2403 arXiv:1512.05366

Targeted searches now identifying dwarf satellites comparable to most luminous ultra-faints / least luminous "classical" Milky Way satellites (Draco analogs) around a variety of hosts out to several Mpc

Serendipitous Discovery with HST

Makarova et al. 2017 arXiv:1711.00696

Draco dwarf analog $m v=20.4$ $M v=-9.4$ D $=9 \mathrm{Mpc}$

Appears in SDSS!

Serendipitous Discovery with HST

Predict $\sim 2 \mathrm{~K}$ similar galaxies within 10 Mpc

LMC, $\mathrm{M}_{\text {ங }} \sim 1.5 \times 10^{9} \mathrm{Mo}$ SMC, $M_{\underset{\boldsymbol{\omega}}{ }} \sim 5 \times 10^{8} \mathrm{Mo}_{\circ}$

Fornax, $\mathrm{M}_{\boldsymbol{u}} \sim 2 \times 10^{7} \mathrm{M}_{\circ}$

Draco, $\mathrm{M}_{\boldsymbol{\varkappa}} \sim 3 \times 10^{5} \mathrm{Mo}_{\circ}$

Segue $1, \mathrm{M}_{\text {ヶ }} \sim 3 \times 10^{2} \mathrm{Mo}$

Wide-field Resolved Stellar Populations throughout Local Volume with WFIRST

Ben Williams, WINGS

Low Surface Brightness Galaxies in HSC

Blue LSBGs

Sample of ~ 800 galaxies with mean
$\mu_{\text {eff }}(g)>24.3$ mag arcsec-2 in first 200 deg 2 of HSC-SSP imaging

Estimate distances in broad range of at least 30-100 Mpc and stellar masses $\mathrm{M}_{\text {山 }} \sim 10^{7}-10^{8} \mathrm{Mo}$
(SMC: $\mathrm{M}_{\boldsymbol{\varkappa}} \sim 5 \times 10^{8} \mathrm{Mo}_{\circ}$)

Greco et al. 2017
arXiv:1709.04474

Satellite Galaxy Populations around Milky Way Analogs (e.g., SAGA survey)

Milky Way analogs at distances 20 to 40 Mpc

Spectroscopic targeting of satellite candidates nearly complete to r ~ 20.75 mag

Stellar masses down to

Geha et al. 2017 arXiv:1705.06743

Satellite galaxy cumulative luminosity functions for first 8 out of a goal total of 100 Milky Way analogs

Concluding Thoughts

I'm optimistic that the observational landscape for ultra-faint galaxies will be qualitatively advanced during the next decade through access to new facilities and clever analysis methods

- one piece of the dark matter puzzle

Some observational benchmarks of the next decade:

- Detect field population of ultra-faint galaxies out to a few Mpc
- Statistical populations of Draco-analogs throughout Local Volume
- Evidence of hierarchical structure formation at dwarf galaxy scales
- Threshold of galaxy formation - how few stars are needed to make a detection if precision photometry, positions, variability, metallicity, and proper motion are all used?
- 5-dimensional phase space information for stars in ultra-faint galaxies

Internal Proper Motions in Sculptor Dwarf

HST + Gaia for 15 stars
12 year baseline

Proper motions constrain the orbital anisotropy

Internal Proper Motions in Sculptor Dwarf

Robustly determining core or cusp profile "would require PMs or LOS velocities for a few thousand stars with individual uncertainties well below $5 \mathrm{~km} / \mathrm{s}$ "

Line of sight velocity dispersion

Strigari et al. 2018
arXiv:1801.07343

