Cosmic Rays

Cosmic Ray Spectra of Various Experiments

Galactic DM signals

Cosmic Rays and Anti-Particles

Pillars of the SNR paradigm

CRs IN SNR \rightarrow DIFFUSIVE SHOCK ACCELERATION, Q(E) $\mathbf{E}^{-\gamma}$

PROPAGATION OF CRs IN THE GALAXY with D(E) $\mathrm{E}^{\delta} \rightarrow$ n(E) $\sim E^{-\gamma-\delta}$
P. Blasi, TeVPA 2011, Stockholm 2011

Positron to Electron Fraction

Secondary positrons (1)

H

PRIMARY COSMIC RAY SPECTRUM AT EARTH

$$
n_{C R}(E)=\frac{N(E) \mathcal{R}}{2 \pi R_{d}^{2}} \frac{H}{D(E)} \equiv \frac{N(E) \mathcal{R}}{2 H \pi R_{d}^{2}} \frac{H^{2}}{D(E)} \propto E^{-\gamma-\delta}
$$

SPECTRUM OF PRIMARY ELECTRONS AT EARTH

$$
n_{e}(E) \approx \frac{N(E) \Re \tau_{\text {loss }}(E)}{\sqrt{D(E) \tau_{\text {loss }}(E)}} \propto E^{-\gamma-1 / 2-\delta / 2} \begin{aligned}
& \text { IF ENERGY LOSSES } \\
& \text { ARE DOMMNANT } \\
& \text { UPONDIFFUSION } \\
& \text { (TYPICALLY E>10 GeV }
\end{aligned}
$$

Courtesy by P. Blasi

Secondary positrons (2)

INJECTION RATE OF SECONDARY POSITRONS

$$
\mathrm{q}_{e^{+}}\left(\mathrm{E}^{\prime}\right) \mathrm{dE}^{\prime}=\mathrm{n}_{\mathrm{CR}}(\mathrm{E}) \mathrm{dE} \mathrm{n}_{\mathrm{H}} \sigma_{\mathrm{pp}} \mathrm{c} \propto \mathrm{E}^{-\gamma-\delta}
$$

EQUILIBRIUM SPECTRUM OF SECONDARY POSITRONS (AND ELECTRONS) AT EARTH
$n_{e^{+}}(E) \approx \frac{q_{e^{+}}(E) \tau_{\text {loss }}(E)}{\sqrt{D(E) \tau_{\text {loss }}(E)}} \propto E^{-\gamma-1 / 2-3 \delta / 2}$

POSITRON FRACTION

Courtesy by P. Blasi

We report the detection, using the High-Altitude Water Cherenkov Observatory(HAWC), of extended teraelectron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured teraelectron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.

Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

A. U. Abeysekara, ${ }^{1}$ A. Albert, ${ }^{2}$ R. Alfaro, ${ }^{3}$ C. Alvarez, ${ }^{4}$ J. D. Álvarez, ${ }^{5}$ R. Arceo, ${ }^{4}$

But see also: e.g. D. Hooper \& T. Linden, arXiv:1711.07482

Fig. 3. Estimated positron energy flux at Earth from Geminga (blue solid line), compared with AMS-02 experimental measurements (green dots). The shaded blue region indicates the 3σ (99.5% confidence) statistical uncertainty from simulations (12). Additional lines represent the effect

Anisotropy in the PAMELA e+ and e- data

Positrons - $\mathrm{R}>10 \mathrm{GV}$

Electrons $R>10 G V$

Significance map for backtraced electrons Background: Monte Carlo simulations
Angular scale 10°

Histogram of calculated significance

Number of events as a function of the angular distance from the Sun direction

Antiproton results: PAMELA vs BESS Polar \& AMS-02

Phenomenological Models for the \bar{p} / p ratio

The precision AMS data allow for exploration of new phenomena

Dark matter contribution to explain the antiproton excess around 10 GV : A. Cuoco, et. Al.Phys. Rev. Lett. 118, 191102 M.Y. Cui, et. al. Phys. Rev. Lett. 118, 191101 (2017)

A. Kounine for the AMS-02 Collaboration, ICRC 2017, Busan, South Korea

Antiproton Data

G. Giesen et al., JCAP 1509 (2015) 023

Kappl, Reinert, Winkler JCAP 2015

Propagation model fitted on preliminary AMS-02 B/C data Greatest uncertainty set by nuclear cross sections

Background antiproton can explain data naturally, mainly because of the small diffusion coefficient slope

Diffusion Halo Model

$$
\frac{\partial N_{i}(E, z, t)}{\partial t}=\underbrace{D(E) \cdot \frac{\partial^{2}}{\partial z^{2}} N_{i}(E, z, t)}_{\text {diffusion }}-\underbrace{N_{i}(E, z, t)\left\{\frac{1}{\tau_{i}^{\text {tin }}(E, z)}+\frac{1}{\left.\gamma(E) \tau_{i}^{\text {dcc }}\right\}}\right\}}_{\text {interaction and decay }}
$$

$$
+\quad \sum_{k \gg} \frac{N_{k}(E, z, t)}{i_{\mathrm{intt}}^{k \rightarrow+}(E, z)}+\quad Q_{i}(E, z)
$$

secondary production primary sources

$$
-\frac{\partial}{\partial E}\left\{\left\langle\frac{\partial E}{\partial t}\right\rangle \cdot N_{i}(E, z, t)\right\}+\frac{1}{2} \frac{\partial^{2}}{\partial E^{2}}\left\{\left\langle\frac{\Delta E^{2}}{\Delta t}\right\rangle \cdot N_{i}(E, z, t)\right\}
$$

energy changing processes
(ionisation, reacceleration)

Fixing the diffusion coefficient: the Boron-to-Carbon ratio

- Li, Be, B are produced by fragmentation of heavier nuclei, mostly C, N, O , on H and He
- B / C is very sensitive to
- propagation effects

$$
\begin{gathered}
B / C=\text { Sec } / \text { Prim } \\
\sim Q_{\text {sec }}(E) / Q_{\text {prim }}(E) \\
\sim Q_{\text {prim }}(E) / D(E) / Q_{\text {prim }}(\\
\sim 1 / D(E)
\end{gathered}
$$

FIG. 1. The AMS boron to carbon ratio (B/C) as a function of rigidity in the interval from 1.9 GV to 2.6 TV based on 2.3 million boron and 8.3 million carbon nuclei. The dashed line shows the single power law fit starting from 65 GV with index $\Delta=$ -0.333 ± 0.014 (fit) ± 0.005 (syst).
M. Aguilar, PRL 117 (2016) 231102

Transport Equation for the transport, modulation and acceleration of cosmic rays in the heliosphere

Time-dependent, pitch-angle-averaged distribution function Diffusion

Convection with solar wind
Particle Drifts
Adiabatic energy changes

Second order Fermi acceleration

TE in spherical coordinates: diffusion tensor

$$
\begin{align*}
\frac{\partial f}{\partial t}= & {\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} K_{r r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(K_{\theta r} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial K_{\phi r}}{\partial \phi}-V\right] \frac{\partial f}{\partial r} } \\
& +\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r K_{r \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(K_{\theta \theta} \sin \theta\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial K_{\phi \theta}}{\partial \phi}\right] \frac{\partial f}{\partial \theta} \\
& +\left[\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial r}\left(r K_{r \phi}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial K_{\theta \phi}}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial K_{\phi \phi}}{\partial \phi}\right] \frac{\partial f}{\partial \phi} \\
& +K_{r r} \frac{\partial^{2} f}{\partial r^{2}}+\frac{K_{\theta \theta}}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{K_{\phi \phi}}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{2 K_{r \phi}}{r \sin \theta} \frac{\partial^{2} f}{\partial r \partial \phi} \\
& +\frac{1}{3 r^{2}} \frac{\partial}{\partial r}\left(r^{2} V\right) \frac{\partial f}{\partial \ln p}+Q_{\text {source }}(r, \theta, \phi, p, t), \tag{4}
\end{align*}
$$

The diffusion tensor can then be written as: (r, θ, ϕ) is:

$$
\begin{gather*}
{\left[\begin{array}{lll}
K_{r r} & K_{r \theta} & K_{r \phi} \\
K_{\theta r} & K_{\theta \theta} & K_{\theta \phi} \\
K_{\phi r} & K_{\phi \theta} & K_{\phi \phi}
\end{array}\right]\left[\begin{array}{ccc}
\kappa_{\|} & 0 & 0 \\
0 & \kappa_{\perp \theta} & \kappa_{A} \\
0 & -\kappa_{A} & \kappa_{\perp r}
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & 0 & -\sin \psi \\
0 & 1 & 0 \\
\sin \psi & 0 & \cos \psi
\end{array}\right]=} \\
{\left[\begin{array}{ccc}
\kappa_{\|} \cos ^{2} \psi+\kappa_{\perp r} \sin ^{2} \psi & -\kappa_{A} \sin \psi & \left(\kappa_{\perp r}-\kappa_{\|}\right) \cos \psi \sin \psi \\
\kappa_{A} \sin \psi & \kappa_{\perp \theta} & \kappa_{A} \cos \psi \\
\left(\kappa_{\perp r}-\kappa_{\|}\right) \cos \psi \sin \psi & -\kappa_{A} \cos \psi & \kappa_{\|} \sin ^{2} \psi+\kappa_{\perp r} \cos ^{2} \psi
\end{array}\right]} \tag{5}
\end{gather*}
$$

with ψ the spiral angle of the magnetic field with respect to the radial direction. The components of the gradient and curvature drift velocity are:

$$
\begin{align*}
\left\langle\mathbf{v}_{d}\right\rangle_{r} & =-\frac{\mathrm{A}}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta K_{\theta r}\right) \\
\left\langle\mathbf{v}_{d}\right\rangle_{\theta} & =-\frac{\mathrm{A}}{r}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\left(K_{\phi \theta}\right)+\frac{\partial}{\partial r}\left(r K_{r \theta}\right)\right], \\
\left\langle\mathbf{v}_{d}\right\rangle_{\phi} & =-\frac{\mathrm{A}}{r} \frac{\partial}{\partial \theta}\left(K_{\theta \phi}\right) \tag{6}
\end{align*}
$$,

Modified and Ideal Parker

_ـ (e+)+(e-) AMS-02 PRL (2014); 2011-05-19,2013-11-26;
\longrightarrow (e+)+(e-) CALET PRL (2017); 2015-10-13 00:00:00.0,2017-06-30 00:00:00.0;
\square (e+)+(e-) DAMPE Nature (2017); 2015-12-27 00:00:00.0,2017-06-08 00:00:00.0;
_o (e+)+(e-) Fermi-LAT Phys. Rev. D (2017); 2008-08-04 00:00:00.0,2015-06-24 00:00:00.0;

- (e+)+(e-) Fermi-LAT Phys. Rev. D (2017); 2008-08-04 00:00:00.0,2015-06-24 00:00:00.0;

Electron spectrum

Background "free" Signals?

Why Anti-Deuterium? Background

Why Anti-Deuterium? Signal

AntiDeuteron Flux
 $\phi(\bar{D}) \propto<\sigma V>$ annihilitaion $\left(\frac{\rho_{D M}}{M_{D M}}\right)^{2}$
 $\otimes\left(\text { cohalescence } p_{0}\right)^{3} \otimes$ propagation

Why Anti-Deuterium? Signal

AntiDeuteron Flux

$\phi(\bar{D}) \propto<\sigma v>$ annihilitaion $\left(\frac{\rho_{\mathrm{DM}}}{M_{D M}}\right)^{2}$
$\otimes\left(\text { cohalescence } p_{0}\right)^{3} \otimes$ propagation

ANTIDEUTERON SENSITIVITY

Below $.25 \mathrm{GeV} / \mathrm{n} \rightarrow \bar{D}$ background ~ 3 orders of magnitude less than the expected signals from DM models.

Neutralino

- SUSY lightest supersymmetric particle, decay into bb, compatible with signal from Galactic Center measured by Fermi

Gravitino

- late decays of unstable gravitinos;

ASTROPHYSICAL BACKGROUND

- Collisions of protons and antiprotons with interstellar medium;

CR Antihelium

Cirelli, Fornengo, Taoso, Vittino, JCAP2014; Carlson, Coogan, Linden, Profumo, Ibarra, Wild et al. PRD2014

AMS status on complex animatter analysis
To date we have observed a few $Z=-2$ events with mass around ${ }^{3} \mathrm{He}$.

The corresponding sample with $Z=+2$ amount to ~ 700 million helium events.

At a signal to background ratio of one in one billion, detailed understanding of the instrument is required.
It will take a few more years of detector verification and to collect more data to ascertain the origin of these events.
A. Kounine for the AMS-02 Collaboration, ICRC 2017, Busan, South Korea

PAMELA case: Antiproton / positron identification

Time-of-flight: trigger, albedo rejection, mass determination (up to $1 \mathbf{G e V}$)

Bending in spectrometer: sign of charge

Ionisation energy loss (dE/dx): magnitude of charge

Interaction pattern in calorimeter: electron-like or proton-like, electron energy

PAMELA Antiproton case: proton 'spillover' background

- Spectrometer tracking information is crucial for high-energy antiproton selection
- Finite spectrometer resolution - high rigidity protons may be assigned wrong sign-of-charge
- Also background from scattered protons
- Eliminate 'spillover' using strict track cuts (x^{2}, lever arm, no δ-rays, etc)
- MDR > $10 \times$ reconstructed rigidity
- Spillover limit for antiprotons expected to be $\sim 200 \mathrm{GeV}$.

MDR > $\mathbf{8 5 0}$ GV, no EM shower

