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ΛCDM at small scales

de Blok et al. 2001

• core/cusp problem
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ΛCDM at small scales

• substructure problem 
(missing satellites)
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ΛCDM at small scales

• too-big-to-fail problem

log halo mass

lo
g 

# 
of

 h
al

os

CDM

LG obs.

missing satellites 
problem

too big to fail 
problem



Cosmic Web: Small Scale Structure (SSS) - problems
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WIMP miracle

Traditional Cold Dark Matter paradigm 

WIMP miracle 
-- mass ~ hundreds GeV - few TeV
-- weak cross-section ~ 10-37 cm2

seems to fail
or, at least, many scenarios ruled out
-- direct detection experiments push cross-section 
by orders of magnitude to < 10-44-45 cm2 

The Energy Scale

• gauge interactions determine 
energy scale in a known way

• F, Mmess set by dynamics of 
supersymmetry-breaking
– same for all sectors

• in each sector, ratio of coupling 
to mass is approximately fixed

• same ratio determines 
annihilation cross-section 
– determines relic density   

(Scherrer, Turner; Kolb, Turner)

– if WIMP miracle gets it right, 
so does every other sector
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Possible solutions

• Baryonic physics
- NS, BH feedback
- outflows
- star formation
- CR, turbulence

• Dark Matter physics



Possible solutions

• Baryonic physics
- NS, BH feedback
- outflows
- star formation
- CR, turbulence

• Dark Matter physics

inconclusive  
(or need too strong feedback)

• large σ in dark sector 
• multi-flavor *

* naturally,  N-component flavor-mixed DM (named a la Pontecorvo model of neutrinos)



Interactions do not care about 
propagation (mass) eigenstates;  

Propagation does not care about 
interaction (flavor) eigenstates.   
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2-component mixed particle 
B. Pontecorvo (1957)
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V1(x)

Schrödinger equation

Hfree Hgrav V

Illustrative model

(MM, J Phys A 2010)



No flavor mixing case

scatterer



red – heavy state
blue – light state

scatterer

With flavor mixing
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Quantum evaporation - the “Münchhausen effect”

MM, J Phys A 2010; JCAP 2014
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The particle can leak 
out of 

(or “evaporate” from) 

scatterer

ϕ(x)

Particle gradual escape from a gravitational 
potential (in "elastic" collisions) without 
changing particle's identity



“Münchhausen effect”

Baron von Münchhausen lifted himself 
(and his horse) out of the mud by pulling 
on his own pigtail.

It is one of the “true” stories from 
“The Surprising Adventures of Baron 
Munchhausen” by R.E. Raspe



Flavor-mixed NcDM model (2cDM)

(i) Dark Matter — stable N-component mixed particles

∣h⟩, ∣l⟩ (ii) DM halos — self-gravitating ensembles of mass eigenstates  

∣h⟩ + ∣l⟩ ➞ ∣l⟩ + ∣l⟩
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(iii) Quantum evaporation of DM mass eigenstates

/N-component flavor-mixed DM with N=2 (2cDM) - simplest/

Postulates



2cDM kinematics

MM, J Phys A 2010; JCAP 2014

"kick" velocity:  vk = c (∆m/ml) 1/2

example: ∣h⟩ + ∣l⟩ ➞ ∣l⟩ + ∣l⟩
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2cDM kinematics

MM, J Phys A 2010; JCAP 2014

"kick" velocity:  vk = c (∆m/ml) 1/2

example: ∣h⟩ + ∣l⟩ ➞ ∣l⟩ + ∣l⟩

if vkick ≫ vescape.     dwarf halos destroyed

h l

l
l

halo

h l

l
l

halo

if vkick ≪ vescape.      central cusps softened



Do halos evaporate completely?

MM, J Phys A 2010; JCAP 2014
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Figure 8. Normalized expectation values of the number of particles confined inside the gravitational
potential as a function of time, similar to figure 4. Any time a heavy mass eigenstate is converted
into a light mass eigenstate in a collision, soon after that the light mass eigenstate escapes to infinity.

Let us also assume that the system is “optically thin”, i.e., probability of particle inter-
action during one bounce is very small, so if a conversion occurred, the escaping eigenstate
experiences no further interactions and just leaves the system for good. We also assume
that only forward conversions (h ! l) can occur; inverse processes (l ! h) are kinemat-
ically forbidden. We consider indistinguishable particles and also assume that vk > vesc.
These assumptions are very natural for non-relativistic mixed particles such as neutrinos
(e.g., relic neutrinos from big bang) and some dark matter candidates because of their very
small interaction cross-sections.

The composition at t > 0 is described by nh(t) and nl(t), which are governed by equa-
tions

ṅh = �(�hhv)n
2
h � (�hlv)nhnl, (5.1a)

ṅl = �(�hlv)nhnl, (5.1b)

where we also assumed, for simplicity, that the particle density is uniform throughout the
system. Here v is the relative velocity of two interacting eigenstates which are comparable
for heavy and light eigenstates if mh ' ml. Here also �hh is the total cross-section of the
processes hh ! hl, lh, ll and �hl is the total cross-section of the processes hl, lh ! ll, hence
�hh / 2E2+D

2 and �hl / 2F 2, see eqs. (2.10), (2.16). Whereas the general solution to these
equations has no simple analytical solution, the asymptotic state can be found as follows.
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small interaction cross-sections.
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if R = 1. We still do not know nh(t) and nl(t), but we note that h ! l conversions will occur
as long as nh(t) 6= 0. Therefore, asymptotically, when nh(1) ! 0, nl(1) ! nl,1 — some
constant value:
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nl,0

=


1�
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(1�R)

� 1
1�R

, (5.4a)

which is valid for both 0  R < 1 and R > 1, and
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✓
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◆
, (5.4b)

if R = 1.
We now conclude that when the initial composition satisfies the inequality

nl,0

nh,0
 1�

�hh

�hl
, (5.5)

complete evaporation of mixed particles occurs, that is no particles will be left inside the
gravitational well, nh,1 = nl,1 = 0. Of course, the particles will be outside and traveling
to infinity as light mass eigenstates only. This means that the flavor composition will be
n↵ : n� = sin2 ✓ : cos2 ✓.

6 Conversions in Minkovsky space

It is also important to investigate interactions of the particles in free space when gravity
is negligible. This regime is relevant, for example, for the flavor-mixed dark matter in the
early universe before structure formation starts, and for the relic cosmological neutrinos when
they eventually become non-relativistic but still too hot to be confined by the gravitational
attraction of the the large scale structure.

As before, mass eigenstates of a mixed particle move as if they are normal particles with
certain (unequal) velocities and masses. The key di↵erence between free and gravitationally
confined particles is how their wave-packets spread with time. Depending on the shape
of the potential, the wave-packet of a trapped particle, generally, spreads slower than in
free space or even contracts (e.g., near the turning points). In this case, the separation of
mass eigenstates occurs rapidly and can be nearly perfect as t ! 1, so one can treat these
eigenstates independently. In contrast, the wave-packets widths of free particles grow linearly
with time and so does the separation between them. Therefore, the wave-packets of the two
mass eigenstates can remain partially overlapped as t ! 1, and the e↵ect may be very
significant depending on particle masses. Particle interactions in this case will involve both
mass eigenstates leading to suppression of mass-conversion amplitudes. For example, when
mass eigenstate wave-packets perfectly overlap, each particle is in a specific flavor eigenstate,
and interactions do not change particle flavors (and hence mass eigenstate composition) by
definition of an eigenstate.

Let us consider a non-relativistic mixed particle created at some moment of time t = 0 at
a position x0 in a certain flavor eigenstate. It is a coherent superposition of mass eigenstates
and each is described by a wave-packet, which we assume here to be gaussian:
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and interactions do not change particle flavors (and hence mass eigenstate composition) by
definition of an eigenstate.

Let us consider a non-relativistic mixed particle created at some moment of time t = 0 at
a position x0 in a certain flavor eigenstate. It is a coherent superposition of mass eigenstates
and each is described by a wave-packet, which we assume here to be gaussian:
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Figure 8. Normalized expectation values of the number of particles confined inside the gravitational
potential as a function of time, similar to figure 4. Any time a heavy mass eigenstate is converted
into a light mass eigenstate in a collision, soon after that the light mass eigenstate escapes to infinity.

Let us also assume that the system is “optically thin”, i.e., probability of particle inter-
action during one bounce is very small, so if a conversion occurred, the escaping eigenstate
experiences no further interactions and just leaves the system for good. We also assume
that only forward conversions (h ! l) can occur; inverse processes (l ! h) are kinemat-
ically forbidden. We consider indistinguishable particles and also assume that vk > vesc.
These assumptions are very natural for non-relativistic mixed particles such as neutrinos
(e.g., relic neutrinos from big bang) and some dark matter candidates because of their very
small interaction cross-sections.

The composition at t > 0 is described by nh(t) and nl(t), which are governed by equa-
tions

ṅh = �(�hhv)n
2
h � (�hlv)nhnl, (5.1a)

ṅl = �(�hlv)nhnl, (5.1b)

where we also assumed, for simplicity, that the particle density is uniform throughout the
system. Here v is the relative velocity of two interacting eigenstates which are comparable
for heavy and light eigenstates if mh ' ml. Here also �hh is the total cross-section of the
processes hh ! hl, lh, ll and �hl is the total cross-section of the processes hl, lh ! ll, hence
�hh / 2E2+D

2 and �hl / 2F 2, see eqs. (2.10), (2.16). Whereas the general solution to these
equations has no simple analytical solution, the asymptotic state can be found as follows.
From eqs. (5.1a), (5.1b):

dnh

dnl
=

�hh nh

�hl nl
+ 1. (5.2)

This equation has a solution:

nh(t)

nh,0
=

✓
nl,0/nh,0

1�R

◆✓
nl(t)

nl,0

◆
+

✓
1�

nl,0/nh,0

1�R

◆✓
nl(t)

nl,0

◆R

, (5.3a)

where R = �hh/�hl 6= 1, and
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❖ GADGET, 50 Mpc/h box, standard ΛCDM cosmology 
❖ At each step:

✦ Pairs of nearest neighbors are identified
✦ Densities of each species are found at each particle location
✦ Conversion probabilities are calculated
✦ Monte-Carlo module is used for conversions
✦ Energy-momentum is manifestly conserved in every interaction

❖  2 free parameters: σ(v)/m [with σ∝(v/vk)-1] and ∆m/m [or vk=c(2∆m/m)1/2]

N-body simulations
3

code as smooth-particle-hydro (SPH) particles but with-
out hydro-force acceleration. To model particles’ binary
interactions, we use the Monte-Carlo technique together
with the “binary collision approximation” [38, 40], which
is reliable for weakly collisional systems. The Monte-
Carlo particle interaction module works as follows. For
each randomly chosen projectile particle, si, a nearest
neighbor is found; this is the target particle, ti (the sub-
script i stands for ‘initial’, i.e. before the interaction).
This procedure identifies the type and velocity of each
particle in the interacting pair, i.e., the input channel.
For each input channel, siti there always are four output
channels, sf tf (here f stands for ‘final’, i.e., after the in-
teraction), namely: hh, hl, lh and ll. We compute the
probabilities for each process siti ! sf tf as follows:

Psiti!sf tf = (⇢ti/mti)�siti!sf tf |vti � vsi |�t ⇥(Esf tf )
(3)

where �siti!sf tf = �si(v) is the cross-section given by
Eq. (1), vti � vsi is the relative velocity of particles in
the pair, ⇢ti is the density of target species, �t is the it-
eration time-step and ⇥(Esf tf ) is the Heaviside function
which ensures that the process is kinematically allowed
(i.e., negative final kinetic energy, Esf tf < 0, means the
process cannot occur). The densities ⇢ti of each species
at each particle’s position are computed using the appro-
priately modified density routine used in the SPH mod-
ule of the original code. Whether an interaction occurs
and through which channel it proceeds is determined by
random drawing in accordance with the computed prob-
abilities. Kinematics of all interactions is computed in
the center of mass frame, where the momentum is con-
served manifestly. If a scattering occurs, the particles are
given random antiparallel velocities (in the center of mass
frame) with magnitudes set by the energy and momen-
tum conservation laws. If a conversion occurs, then (i)
the type of one or both particles is changed accordingly,
(ii) the magnitudes of the final velocities are computed
accounting for the �mc2 given or taken, depending on
the type of conversion and (iii) these velocities are as-
signed to particles in antiparallel directions in the center
of mass frame. If no interaction occurs, the particle ve-
locities and types remain intact. After this, the pair is
marked inactive until the next time-step. This process is
repeated for all active particles at each time step.

Simulations reported here were performed using
XSEDE high performance computing systems Trestles
and Ranger. The 2cDM runs have 2 ⇥ 4003 = 128 mil-
lion SPH-DM particles (in 2cDM, the initial numbers of
h and l particles are equal) in the box of 50h�1 Mpc
(comoving) with the force resolution scale of 3.5h�1 kpc,
and the reference ⇤CDM run has 2 ⇥ 6403 ⇡ 524 mil-
lion particles and the force resolution of 2.2h�1 kpc. Our
box size was optimized to be large enough to be a rep-
resentative sample the universe volume, yet it provides
reasonable resolution at small scales. All the runs are

DM-only simulations using the standard cosmological pa-
rameters ⌦m = 0.3,⌦⇤ = 0.7,⌦b = 0 and h = 0.7. Initial
conditions are generated using N-GenIC code with the
Eisenstein-Hu spectrum model, with �8 = 0.9 and the
initial redshift z = 50. Post-processing was done with
AHF code [60], which was used to construct the halo
mass and velocity functions, analyze halo density pro-
files, etc. Simulations of SIDM have also been done for
the same cosmological parameters. They fully confirm
earlier studies, e.g., the inability to resolve the substruc-
ture problem, hence these results are not reported here.
A number of simulations were performed to explore a
range of the 2cDM model parameters �m/m and �/m,
to compare with the reference CDM and SIDM models
and to check for numerical convergence. All the results
will be reported in detail elsewhere; here we show the
most important ones.
Results. — Simulations with large mass di↵erence

mh � ml (not presented here) grossly disagree with the
observational data, so this case is omitted from further
consideration. In passing we note that mass segregation
caused by collisions, in which heavier species tending to
settle closer to the halo center, is negligible here because
�m/m ⌧ 1.
The DM distribution at z = 0 for the 2cDM and

⇤CDM models are presented in Fig. 1, which show the
zoomed-in region of 5 Mpc across. One can see the re-
duced number of subhalos and the less concentrated cen-
tral parts in the 2cDM case. The 2cDM parameters used
are �m/m ' 10�8, which corresponds to vk = 50 km/s,
and �/m = 0.75 cm2/g at v0 ⇠ vk, which is fully consis-
tent with observational constraints on the SIDM cross-
section [41–47, 53]. For these values, the 2cDM circular
velocity function matches the Local Group data the best,
as is illustrated in Fig. 2. This figure shows the num-
ber of halos with the maximum circular velocity above a
certain value, N(> Vc,max) versus Vc,max, for 2cDM and
⇤CDM; the data points are from [3, 4]. The amount of
substructure is volume-dependent, so we appropriately
renormalized the data points to reproduce the results of
Refs. [3, 4] using the velocity function from our ⇤CDM
simulation; the procedure is legitimate for a scale-free er-
godic distribution of DM substructure. However, no data
rescaling of any kind is done for the substructure velocity
functions of two individual Milky Way-like halos shown
in the inset. In both cases, the agreement with 2cDM is
much better than with ⇤CDM.
Scanning though the 2cDM model parameters, we have

found that vk uniquely determines the position of the
break in the velocity function, V break

c,max ' vk, whereas
�/m determines the slope below the break. By compar-
ing simulations with observational data, we determined
vk (and consequently �m/m) rather accurately to be
around ⇠ 50 � 70 km/s. Interestingly, a similar value
of a characteristic velocity . 100 km/s was found in an-
other independent analysis of survey data [5]. The ‘best

2

Model. — First, we postulate that dark matter par-
ticles are flavor mixed. Generally, a mixed particle of
a particular flavor ↵ is a superposition of several mass-
eigenstates |f↵i = a1 |m1i+ a2 |m2i+ . . . , where |fi and
|mi denote wave-functions being flavor and mass eigen-
states, and a1, a2, . . . are complex constants being the el-
ements of a unitary matrix. For the sake of simplicity, we
consider the simplest model of a flavor-mixed DM parti-
cle involving only two mass eigenstates and, correspond-
ingly, two flavors [55, 56], i.e., the two-component dark
matter (2cDM) model. The masses of the mass eigen-
states are mh and ml < mh, referred to as ‘heavy’ and
‘light’. Since mass eigenstates generally have di↵erent ve-
locities [57, 58], they propagate along di↵erent geodesics.
Hence, they can be spatially separated by gravity during
structure formation: the eigenstates with smaller speeds
become trapped in a growing DM halo earlier than the
faster ones. The DM halos are, thus, self-gravitating en-
sembles of non-overlapping wave-packets of heavy and
light eigenstates.

Second, we also postulate that DM particles can inter-
act with each other non-gravitationally with some cross-
section, which can generally be velocity dependent. Any
cross-section model, �si(v), that is consistent with exist-
ing SIDM constraints can equally well be utilized in our
2cDM model. It is customary in cosmology to parame-
terize it as follows:

�si(v) = � (v/v0)
�a , (1)

where � and a are parameters and v0 is a normaliza-
tion constant. Previous studies and observational data
allow for a & 1 [41, 43, 53], so a = 1 is used in simu-
lations reported here. This 1/v-dependence is also nat-
ural for mass-eigenstate conversions [56]. Observations
can constrain the ratio �/m, there m is the DM particle
mass. The allowed range is 0.1 . �/m . O(1) cm2/g for
the assumed normalization v0 = 100 km/s [41, 43, 53].
Simulations with larger values of �/m start to disagree
with observations; too small values mean that DM is ef-
fectively collisionless on cosmologically scales of interest.
We use the value of �/m = 0.75 cm2/g in our simulation
reported here.

The dynamics of non-relativistic mixed particles is rich
and can be rather unusual. It has been shown that elastic
scattering of mixed particles can cause their mass eigen-
state conversions because of the non-diagonal elements
of the flavor interaction matrix in the mass basis [55].
For example, a collision of a mass eigenstate |mhi with
another particle can lead to either the usual elastic scat-
tering |mhi ! |mhi or the conversion |mhi ! |mli,
or simply h ! l. Let’s consider the latter and as-
sume, for simplicity, that the initial velocity is vanish-
ing. Conservation of energy in the h ! l conversion is
mhc2 = mlc2 + mlv2/2. Thus, the light eigenstate gets

a velocity kick v = c [2(mh �ml)/ml]
1/2 in a random

direction (the other particle also gets a recoil, so the to-
tal momentum is conserved). Our simulations indicate
that the high mass-degeneracy case, mh ' ml = m and
�m ⌘ (mh �ml) ⌧ m, fits observations the best. Thus
we define the ‘kick velocity’ parameter

vk = c
p

2�m/m, (2)

which can be used in place of the mass di↵erence parame-
ter, �m/m. If this kick velocity exceeds the escape veloc-
ity from a DM halo, a part of the particle’s wave-function
– the resultant l-eigenstate – will escape from the halo,
thus decreasing the particle’s probability to be in that
halo and, hence, the halo’s total mass. Such irreversible
escape of flavor-mixed particles from a gravitational po-
tential well was referred to as the “quantum evaporation”
[55, 56]. It was suggested that quantum evaporation can
simultaneously soften the density cusps and reduce the
number of subhalos. In contrast, the structure on large
scales where the escape velocities are much larger than
vk is una↵ected.
Interactions of two mixed particles involves all possi-

ble combinations of mass-eigenstate pairs in the input
and output channels. Full quantum mechanical descrip-
tion is presented elsewhere [56]. The m-conversions in
which one or two heavy eigenstates are converted into
the lighter states, hh ! hl, hh ! ll and hl ! ll, can
lead to the quantum evaporation. Because of the energy-
momentum conservation, the kinetic energy of the eigen-
states in heavy-to-light conversions increases by �mc2

in processes like hh ! hl and twice as much in hh ! ll.
The reverse processes hl ! hh, ll ! hl and ll ! hh and
can also occur if kinematically allowed, i.e., if the initial
kinetic energy is large enough to produce a heavy eigen-
state. Finally, the elastic scattering processes ll ! ll,
hl ! hl and hh ! hh can occur as well.

It was shown that complete evaporation of a halo is
possible depending on the values the m-conversion cross-
sections and the initial DM composition [56] – all depend
on the mixing angle. For our simulations, we chose one of
such cases: the maximal mixing and, hence, equal initial
numbers of h and l eigenstates. In general, the scattering
and conversion cross-sections are related: they depend on
the flavor interaction strengths and the mixing angle (see
[56] for details). We are primarily interested in the ef-
fect of m-conversions. The conversion cross-section is the
largest for the maximal mixing and is equal to the elastic
cross-section, so we use Eq. (1) in all interactions. Note
that 2cDM reduces to SIDM in the case of the vanishing
mixing angle [56].

Numerical implementation. — The physics of interac-
tions of mixed particles was implemented in the publicly
available cosmological TreePM/SPH code [59] Gadget-2.
We simulate two types of DM particles representing h
and l mass eigenstates; the total numbers of each type
can change due to particle conversions. In order to imple-
ment interactions of DM particles, they are treated in the
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code as smooth-particle-hydro (SPH) particles but with-
out hydro-force acceleration. To model particles’ binary
interactions, we use the Monte-Carlo technique together
with the “binary collision approximation” [38, 40], which
is reliable for weakly collisional systems. The Monte-
Carlo particle interaction module works as follows. For
each randomly chosen projectile particle, si, a nearest
neighbor is found; this is the target particle, ti (the sub-
script i stands for ‘initial’, i.e. before the interaction).
This procedure identifies the type and velocity of each
particle in the interacting pair, i.e., the input channel.
For each input channel, siti there always are four output
channels, sf tf (here f stands for ‘final’, i.e., after the in-
teraction), namely: hh, hl, lh and ll. We compute the
probabilities for each process siti ! sf tf as follows:

Psiti!sf tf = (⇢ti/mti)�siti!sf tf |vti � vsi |�t ⇥(Esf tf )
(3)

where �siti!sf tf = �si(v) is the cross-section given by
Eq. (1), vti � vsi is the relative velocity of particles in
the pair, ⇢ti is the density of target species, �t is the it-
eration time-step and ⇥(Esf tf ) is the Heaviside function
which ensures that the process is kinematically allowed
(i.e., negative final kinetic energy, Esf tf < 0, means the
process cannot occur). The densities ⇢ti of each species
at each particle’s position are computed using the appro-
priately modified density routine used in the SPH mod-
ule of the original code. Whether an interaction occurs
and through which channel it proceeds is determined by
random drawing in accordance with the computed prob-
abilities. Kinematics of all interactions is computed in
the center of mass frame, where the momentum is con-
served manifestly. If a scattering occurs, the particles are
given random antiparallel velocities (in the center of mass
frame) with magnitudes set by the energy and momen-
tum conservation laws. If a conversion occurs, then (i)
the type of one or both particles is changed accordingly,
(ii) the magnitudes of the final velocities are computed
accounting for the �mc2 given or taken, depending on
the type of conversion and (iii) these velocities are as-
signed to particles in antiparallel directions in the center
of mass frame. If no interaction occurs, the particle ve-
locities and types remain intact. After this, the pair is
marked inactive until the next time-step. This process is
repeated for all active particles at each time step.

Simulations reported here were performed using
XSEDE high performance computing systems Trestles
and Ranger. The 2cDM runs have 2 ⇥ 4003 = 128 mil-
lion SPH-DM particles (in 2cDM, the initial numbers of
h and l particles are equal) in the box of 50h�1 Mpc
(comoving) with the force resolution scale of 3.5h�1 kpc,
and the reference ⇤CDM run has 2 ⇥ 6403 ⇡ 524 mil-
lion particles and the force resolution of 2.2h�1 kpc. Our
box size was optimized to be large enough to be a rep-
resentative sample the universe volume, yet it provides
reasonable resolution at small scales. All the runs are

DM-only simulations using the standard cosmological pa-
rameters ⌦m = 0.3,⌦⇤ = 0.7,⌦b = 0 and h = 0.7. Initial
conditions are generated using N-GenIC code with the
Eisenstein-Hu spectrum model, with �8 = 0.9 and the
initial redshift z = 50. Post-processing was done with
AHF code [60], which was used to construct the halo
mass and velocity functions, analyze halo density pro-
files, etc. Simulations of SIDM have also been done for
the same cosmological parameters. They fully confirm
earlier studies, e.g., the inability to resolve the substruc-
ture problem, hence these results are not reported here.
A number of simulations were performed to explore a
range of the 2cDM model parameters �m/m and �/m,
to compare with the reference CDM and SIDM models
and to check for numerical convergence. All the results
will be reported in detail elsewhere; here we show the
most important ones.
Results. — Simulations with large mass di↵erence

mh � ml (not presented here) grossly disagree with the
observational data, so this case is omitted from further
consideration. In passing we note that mass segregation
caused by collisions, in which heavier species tending to
settle closer to the halo center, is negligible here because
�m/m ⌧ 1.
The DM distribution at z = 0 for the 2cDM and

⇤CDM models are presented in Fig. 1, which show the
zoomed-in region of 5 Mpc across. One can see the re-
duced number of subhalos and the less concentrated cen-
tral parts in the 2cDM case. The 2cDM parameters used
are �m/m ' 10�8, which corresponds to vk = 50 km/s,
and �/m = 0.75 cm2/g at v0 ⇠ vk, which is fully consis-
tent with observational constraints on the SIDM cross-
section [41–47, 53]. For these values, the 2cDM circular
velocity function matches the Local Group data the best,
as is illustrated in Fig. 2. This figure shows the num-
ber of halos with the maximum circular velocity above a
certain value, N(> Vc,max) versus Vc,max, for 2cDM and
⇤CDM; the data points are from [3, 4]. The amount of
substructure is volume-dependent, so we appropriately
renormalized the data points to reproduce the results of
Refs. [3, 4] using the velocity function from our ⇤CDM
simulation; the procedure is legitimate for a scale-free er-
godic distribution of DM substructure. However, no data
rescaling of any kind is done for the substructure velocity
functions of two individual Milky Way-like halos shown
in the inset. In both cases, the agreement with 2cDM is
much better than with ⇤CDM.
Scanning though the 2cDM model parameters, we have

found that vk uniquely determines the position of the
break in the velocity function, V break

c,max ' vk, whereas
�/m determines the slope below the break. By compar-
ing simulations with observational data, we determined
vk (and consequently �m/m) rather accurately to be
around ⇠ 50 � 70 km/s. Interestingly, a similar value
of a characteristic velocity . 100 km/s was found in an-
other independent analysis of survey data [5]. The ‘best
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Model. — First, we postulate that dark matter par-
ticles are flavor mixed. Generally, a mixed particle of
a particular flavor ↵ is a superposition of several mass-
eigenstates |f↵i = a1 |m1i+ a2 |m2i+ . . . , where |fi and
|mi denote wave-functions being flavor and mass eigen-
states, and a1, a2, . . . are complex constants being the el-
ements of a unitary matrix. For the sake of simplicity, we
consider the simplest model of a flavor-mixed DM parti-
cle involving only two mass eigenstates and, correspond-
ingly, two flavors [55, 56], i.e., the two-component dark
matter (2cDM) model. The masses of the mass eigen-
states are mh and ml < mh, referred to as ‘heavy’ and
‘light’. Since mass eigenstates generally have di↵erent ve-
locities [57, 58], they propagate along di↵erent geodesics.
Hence, they can be spatially separated by gravity during
structure formation: the eigenstates with smaller speeds
become trapped in a growing DM halo earlier than the
faster ones. The DM halos are, thus, self-gravitating en-
sembles of non-overlapping wave-packets of heavy and
light eigenstates.

Second, we also postulate that DM particles can inter-
act with each other non-gravitationally with some cross-
section, which can generally be velocity dependent. Any
cross-section model, �si(v), that is consistent with exist-
ing SIDM constraints can equally well be utilized in our
2cDM model. It is customary in cosmology to parame-
terize it as follows:

�si(v) = � (v/v0)
�a , (1)

where � and a are parameters and v0 is a normaliza-
tion constant. Previous studies and observational data
allow for a & 1 [41, 43, 53], so a = 1 is used in simu-
lations reported here. This 1/v-dependence is also nat-
ural for mass-eigenstate conversions [56]. Observations
can constrain the ratio �/m, there m is the DM particle
mass. The allowed range is 0.1 . �/m . O(1) cm2/g for
the assumed normalization v0 = 100 km/s [41, 43, 53].
Simulations with larger values of �/m start to disagree
with observations; too small values mean that DM is ef-
fectively collisionless on cosmologically scales of interest.
We use the value of �/m = 0.75 cm2/g in our simulation
reported here.

The dynamics of non-relativistic mixed particles is rich
and can be rather unusual. It has been shown that elastic
scattering of mixed particles can cause their mass eigen-
state conversions because of the non-diagonal elements
of the flavor interaction matrix in the mass basis [55].
For example, a collision of a mass eigenstate |mhi with
another particle can lead to either the usual elastic scat-
tering |mhi ! |mhi or the conversion |mhi ! |mli,
or simply h ! l. Let’s consider the latter and as-
sume, for simplicity, that the initial velocity is vanish-
ing. Conservation of energy in the h ! l conversion is
mhc2 = mlc2 + mlv2/2. Thus, the light eigenstate gets

a velocity kick v = c [2(mh �ml)/ml]
1/2 in a random

direction (the other particle also gets a recoil, so the to-
tal momentum is conserved). Our simulations indicate
that the high mass-degeneracy case, mh ' ml = m and
�m ⌘ (mh �ml) ⌧ m, fits observations the best. Thus
we define the ‘kick velocity’ parameter

vk = c
p

2�m/m, (2)

which can be used in place of the mass di↵erence parame-
ter, �m/m. If this kick velocity exceeds the escape veloc-
ity from a DM halo, a part of the particle’s wave-function
– the resultant l-eigenstate – will escape from the halo,
thus decreasing the particle’s probability to be in that
halo and, hence, the halo’s total mass. Such irreversible
escape of flavor-mixed particles from a gravitational po-
tential well was referred to as the “quantum evaporation”
[55, 56]. It was suggested that quantum evaporation can
simultaneously soften the density cusps and reduce the
number of subhalos. In contrast, the structure on large
scales where the escape velocities are much larger than
vk is una↵ected.
Interactions of two mixed particles involves all possi-

ble combinations of mass-eigenstate pairs in the input
and output channels. Full quantum mechanical descrip-
tion is presented elsewhere [56]. The m-conversions in
which one or two heavy eigenstates are converted into
the lighter states, hh ! hl, hh ! ll and hl ! ll, can
lead to the quantum evaporation. Because of the energy-
momentum conservation, the kinetic energy of the eigen-
states in heavy-to-light conversions increases by �mc2

in processes like hh ! hl and twice as much in hh ! ll.
The reverse processes hl ! hh, ll ! hl and ll ! hh and
can also occur if kinematically allowed, i.e., if the initial
kinetic energy is large enough to produce a heavy eigen-
state. Finally, the elastic scattering processes ll ! ll,
hl ! hl and hh ! hh can occur as well.

It was shown that complete evaporation of a halo is
possible depending on the values the m-conversion cross-
sections and the initial DM composition [56] – all depend
on the mixing angle. For our simulations, we chose one of
such cases: the maximal mixing and, hence, equal initial
numbers of h and l eigenstates. In general, the scattering
and conversion cross-sections are related: they depend on
the flavor interaction strengths and the mixing angle (see
[56] for details). We are primarily interested in the ef-
fect of m-conversions. The conversion cross-section is the
largest for the maximal mixing and is equal to the elastic
cross-section, so we use Eq. (1) in all interactions. Note
that 2cDM reduces to SIDM in the case of the vanishing
mixing angle [56].

Numerical implementation. — The physics of interac-
tions of mixed particles was implemented in the publicly
available cosmological TreePM/SPH code [59] Gadget-2.
We simulate two types of DM particles representing h
and l mass eigenstates; the total numbers of each type
can change due to particle conversions. In order to imple-
ment interactions of DM particles, they are treated in the
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be conserved in all processes. The energy-momentum conservation in elastic scattering is
trivial, so we skip it. Conversions are di↵erent. Transitions in which a heavy eigenstate is
converted into a light one go with the increase of kinetic energy and thus have no threshold.
The opposite ones, where l is converted into h, have a threshold �mc

2 = (mh �ml)c2 and
can only occur if kinematically allowed, i.e., if the initial kinetic energy of the interacting
eigenstates is greater than the threshold.

Interestingly, there is a set of parameters, for which the S-matrix elements for elastic
interactions vanish identically but the conversion amplitudes (o↵-diagonal elements) do not.
Indeed, (i) the diagonal matrix elements, eq. (2.10), namely A, B, C contribute to the total
elastic scattering cross-section, �scat; (ii) the o↵-diagonal ‘mass exchange’ matrix elements
V23 = V32 = D also contribute to scattering in a statistical ensemble sense, if particles are
indistinguishable; and (iii) the remaining elements E, F and V14 = V41 = D contribute
to the total conversion cross-section, �conv. It is easy to see that one can have �scal = 0
simultaneously with �conv 6= 0. First, scatterings like lh ! lh and hl ! lh vanish if C =
D = 0, which requires that V↵� = V�↵ = 0, i.e., di↵erent flavors do not interact with each
other, and also that V�� = �V↵↵. Second, scattering channels hh ! hh and ll ! ll vanish
if A = B = 0, which additionally requires maximal mixing, ✓ = ⇡/4. Thus, the matrix V

becomes

V = V↵↵

0

BB@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

CCA (2.11)

and V↵↵ is the only independent matrix element. Thus, Vscat = 0 (diagonal terms) and
Vexchange = 0 (i.e.,V23 and V32 terms, which play a role of scattering in a statistical ensemble)
identically and Vconv 6= 0, i.e., conversions can occur even if the gas of mixed particles has
vanishing elastic scattering S-matrix elements.

The S-matrix elements S(siti)(sf tf) are used to compute interaction cross-sections in

the usual way [3]. Appendix B briefly discusses the scattering standard theory and presents
some useful results. The scattered wave function can be expanded in angular momentum
(or, equivalently, the impact parameter) as

 =
1X

l=0

S
(l)

(siti)(sf tf)
Pl(cos ✓)Rl(r), (2.12)

where Pl are Legendre polynomials, Rl(r) are radial functions being the solution of the radial

part of the Schrödinger equation with a given scattering potential V (r) and S
(l)

(siti)(sf tf)
are

partial S-matrix amplitudes of the processes (siti) ! (sf tf ) for a given l. The elastic
scattering [i.e, (siti) ! (siti)] cross-sections and the conversion [i.e., (siti) ! (sf tf ), where
(siti) 6= (sf tf )] cross-sections are, see eqs. (B.8), (B.9),

�(siti)!(siti) =
⇡

k
2
i

1X

l=0

(2l + 1)
���1� S

(l)
(siti)(siti)

���
2
, (2.13)

�(siti)!(sf tf) =
⇡

k
2
i

1X

l=0

(2l + 1)

����S
(l)

(siti)(sf tf)

����
2

, (2.14)

where ki = pi/~ is the initial wave-number in the center of mass frame.

– 6 –
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Substructure evaporation

Figure B1. Resolution test: 128-3 vs 256-3.

APPENDIX A: POWER-LAW FIT TO HALO CORE & HALO EVOLUTION

APPENDIX B: CONVERGENCE TEST

We compared two cases of the total number of particles N = 2563 and 1283 to check our model’s dependency on resolution.
The top panel in Figure B1 shows a good convergence in the two resolutions overall. That is, the cases with N = 2563 appear
to be just extensions of the N = 1283 cases without significantly altering the halo profiles. The clear exception is the cases
with �0/m = 10 where the discrepancy is significant. A simple explanation for the discrepancy is that the large cross-section
of �0/m = 10 essentially puts the dark matter-dark matter interactions in the fluid regime. Thus the assumption of the weakly
interacting nature of dark matter no longer applies for that particular case, and the higher resolution with a larger number
of particles dramatically increases the frequency of the interactions.

Unlike the good convergence seen in the profiles, the bottom panel shows the mass function appears to be somewhat
more prone to the resolution di↵erence only at the lower-mass end, though the discrepancy does not alter the general shape
of the mass functions.

APPENDIX C: MASS FUNCTION - ANALYTICAL

The e↵ect of conversions on mass and velocity functions.
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Thus, the virial quantities of the mass can be expressed as a function of �

Mvir =
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For the hydrostatic equilibrium,

dP
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+ ⇢g = 0, (C5)
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where P is the pressure and g is the gravitational acceleration. For the ISO we have P = nkBT = ⇢
kBT
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2
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.

In the general case, the equation of state with the adiabatic index � reads P = ⇢
� with the proportionality constant .

After equating the exponent on the radial component r on both sides of the hydrostatic equation, we find
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Probing the cases other than the ISO, the NFW profile, for example, gives
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C1 Mass loss of a halo

The mass loss rate per unit volume can be written
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where Eq. (C1) and � = �0(v/v0)
a are used. If the velocity is approximated as v ⇠ vth, Eq. (C11) can be expressed in a
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which is then integrated over the radial distance to yield

Ṁ =
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Thus, it is evident the mass loss rate can be largely determined by the core radius, rc. As such, if we integrate Eq. (C2) over
the interval of [R, rc], the above equation can be generalized as
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assume profile hydrostatic balance yields

where P is the pressure and g is the gravitational acceleration. For the ISO we have P = nkBT = ⇢
kBT
m = ⇢v

2
th, where

vth ' const, so that

v
2
th
d⇢

dr
+ ⇢

GM(r)
r2

= 0. (C6)

With Eq. (C1) and Eq. (C2), the above equation is reduced to

v
2
th =

4⇡G⇢0R
�

�(3� �)
r
2��

. (C7)

For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.

In the general case, the equation of state with the adiabatic index � reads P = ⇢
� with the proportionality constant .

After equating the exponent on the radial component r on both sides of the hydrostatic equation, we find

� =
2

2� �
, or � = 2(1� 1

�
). (C8)

Probing the cases other than the ISO, the NFW profile, for example, gives

⇢
� = 1 ! � = 0
� = 3 ! � = 4/3

(C9)

The characteristic velocity dispersion can then be obtained from v
2
th = �⇢

��1, and so

vth = vth,0

⇣
r

R

⌘ 2(1��)
2��

= vth,0

⇣
r

R

⌘� ��2
2

,

(C10)

where v
2
th,0 = �⇢

��1
0 .

C1 Mass loss of a halo

The mass loss rate per unit volume can be written

d(M/V )
dt

=
d⇢

dt
= ⇢̇ = �(n�v)⇢ = �⇢

2
⇣
�

m

⌘
v = ⇢0

⇣
r

R

⌘�2� �0

m

✓
v

v0

◆a

v, (C11)
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mass-loss per radius

where P is the pressure and g is the gravitational acceleration. For the ISO we have P = nkBT = ⇢
kBT
m = ⇢v

2
th, where

vth ' const, so that

v
2
th
d⇢

dr
+ ⇢

GM(r)
r2

= 0. (C6)

With Eq. (C1) and Eq. (C2), the above equation is reduced to

v
2
th =

4⇡G⇢0R
�

�(3� �)
r
2��

. (C7)

For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
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integrate to yield the total halo mass-loss
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Figure B1. Resolution test: 128-3 vs 256-3.

APPENDIX A: POWER-LAW FIT TO HALO CORE & HALO EVOLUTION

APPENDIX B: CONVERGENCE TEST

We compared two cases of the total number of particles N = 2563 and 1283 to check our model’s dependency on resolution.
The top panel in Figure B1 shows a good convergence in the two resolutions overall. That is, the cases with N = 2563 appear
to be just extensions of the N = 1283 cases without significantly altering the halo profiles. The clear exception is the cases
with �0/m = 10 where the discrepancy is significant. A simple explanation for the discrepancy is that the large cross-section
of �0/m = 10 essentially puts the dark matter-dark matter interactions in the fluid regime. Thus the assumption of the weakly
interacting nature of dark matter no longer applies for that particular case, and the higher resolution with a larger number
of particles dramatically increases the frequency of the interactions.

Unlike the good convergence seen in the profiles, the bottom panel shows the mass function appears to be somewhat
more prone to the resolution di↵erence only at the lower-mass end, though the discrepancy does not alter the general shape
of the mass functions.

APPENDIX C: MASS FUNCTION - ANALYTICAL

The e↵ect of conversions on mass and velocity functions.
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For the hydrostatic equilibrium,
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where P is the pressure and g is the gravitational acceleration. For the ISO we have P = nkBT = ⇢
kBT
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.

In the general case, the equation of state with the adiabatic index � reads P = ⇢
� with the proportionality constant .
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Probing the cases other than the ISO, the NFW profile, for example, gives
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C1 Mass loss of a halo

The mass loss rate per unit volume can be written

d(M/V )
dt

=
d⇢

dt
= ⇢̇ = �(n�v)⇢ = �⇢

2
⇣
�

m

⌘
v = ⇢0

⇣
r

R

⌘�2� �0

m

✓
v

v0

◆a

v, (C11)

where Eq. (C1) and � = �0(v/v0)
a are used. If the velocity is approximated as v ⇠ vth, Eq. (C11) can be expressed in a
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dṀ

dr
= 4⇡r2⇢̇ = 4⇡r2⇢̇0

⇣
r

R

⌘�
(C13)

which is then integrated over the radial distance to yield
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Thus, it is evident the mass loss rate can be largely determined by the core radius, rc. As such, if we integrate Eq. (C2) over
the interval of [R, rc], the above equation can be generalized as
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assume profile hydrostatic balance yields
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.

In the general case, the equation of state with the adiabatic index � reads P = ⇢
� with the proportionality constant .

After equating the exponent on the radial component r on both sides of the hydrostatic equation, we find

� =
2

2� �
, or � = 2(1� 1

�
). (C8)

Probing the cases other than the ISO, the NFW profile, for example, gives

⇢
� = 1 ! � = 0
� = 3 ! � = 4/3

(C9)

The characteristic velocity dispersion can then be obtained from v
2
th = �⇢

��1, and so

vth = vth,0

⇣
r

R

⌘ 2(1��)
2��

= vth,0

⇣
r

R

⌘� ��2
2

,

(C10)

where v
2
th,0 = �⇢

��1
0 .

C1 Mass loss of a halo

The mass loss rate per unit volume can be written

d(M/V )
dt

=
d⇢

dt
= ⇢̇ = �(n�v)⇢ = �⇢

2
⇣
�

m

⌘
v = ⇢0

⇣
r

R

⌘�2� �0

m

✓
v

v0

◆a

v, (C11)
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mass-loss per radius
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integrate to yield the total halo mass-loss
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.
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25 approximately constant

initial halo mass

A rough but reasonable approximation of rc/R ⇠ const allows us to write

Ṁ = �|A|M⇠ (C17)

where A is the proportionality constant and ⇠ = 1 + 2(a+ 1)/3. Based on the physically motivated values of a = 0,�1, and
�2, we have ⇠ > 0 in general. We then proceed as
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Thus for a given f(M0), we have

f(M0) = f(M0(M, t)) ⌘ f(M, t). (C21)

Now the cumulative mass function can be obtained by

N(< M) =

Z M

1
f(M)dM (C22)

Since vth / Rvir and Mvir / R
3
vir for ISO, we have

N(< M) = N(< V
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A rough but reasonable approximation of rc/R ⇠ const allows us to write
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solution

final halo mass

indep. of halo shape (beta)

just a constant
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.
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where Eq. (C1) and � = �0(v/v0)
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Thus, it is evident the mass loss rate can be largely determined by the core radius, rc. As such, if we integrate Eq. (C2) over
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Substructure evaporation

mapping of old to new

A rough but reasonable approximation of rc/R ⇠ const allows us to write

Ṁ = �|A|M⇠ (C17)

where A is the proportionality constant and ⇠ = 1 + 2(a+ 1)/3. Based on the physically motivated values of a = 0,�1, and
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New mass function given the old one                is       
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M0 =
h
(1� ⇠)At+M

1�⇠
i1/(1�⇠)

(C19)

which is a mass distribution function. In particular,

M0 =

8
>><

>>:

⇣
M

�2/3 � 2
3At

⌘�3/2
, a = 0

Me
At
, a = �1⇣

M
2/3 + 2

3At

⌘3/2
, a = �2

(C20)

Thus for a given f(M0), we have

f(M0) = f(M0(M, t)) ⌘ f(M, t). (C21)

Now the cumulative mass function can be obtained by

N(< M) =

Z M

1
f(M)dM (C22)

Since vth / Rvir and Mvir / R
3
vir for ISO, we have

N(< M) = N(< V
3) (C23)

(C24)

(C25)

(C26)

(C27)

(C28)

(C29)
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2cDM-σ(v) -- Substructure

Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to
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simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m

< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h
(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2
�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).
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Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to

4
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(as, ac)

(Todoroki & MM, in prep.)
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Figure 3. DM halo density profiles.

Figure 4. Velocity dispersion profiles.
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2cDM-σ(v) -- Profiles (MW-like)

simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m

< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h
(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2
�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).

2

Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to
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(Todoroki & MM, in prep.)



2cDM-σ(v) -- Profiles (Dwarfs)

simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m

< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h
(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2
�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).

2

Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to
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(Todoroki & MM, in prep.)



2cDM-σ(v) -- Core relations (obs vs sim)

(Data: 
Strigari et al. 2008; 
Burkert 2015 )

Red symbols - simulations
Gray crosses - MW sSph



2cDM-σ(v) -- Profiles (Clusters)

(Todoroki & MM, in prep.)



Message 2

2cDM: Resolves core-cusp problem.
Core size tells:

σ0/m and index as (scattering)

Wide parameter region allowed:
σ(v) ~ 1...0.1...0.01 – consistent with all constraints
∆m/m ~ 10–8   ⇔  vk ~ 50-100 km/s

PROFILES

core sizes from fits to simulated halos 



                       Radial distribution of satellites (CDM)
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2cDM-σ(v) -- dwarf distribution

simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m

< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h
(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2
�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).

2

Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to
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Message 3
DISTRIBUTION of 
 SATELLITES

2cDM: Resolves 
substructure radial 
distribution.
Shape of function depends 
on all parameters

Wide parameter region allowed:
σ(v) ~ 1...0.1...0.01 – consistent with all constraints
∆m/m ~ 10–8   ⇔  vk ~ 50-100 km/s



2cDM model summary

• Substructure Problem
• TBTF problem
• Core/cusp problem 

across halo mass scales 
from dwarfs to clusters

• Radial distribution of 
dwarfs (problem?)

σ(v) ~ 1(?)...0.1...0.01 
(as, ac) = (0,0), (-2,-2) -- natural 
∆m/m ~ 10–8   ⇔  vk ~ 50-100 km/s

MW Dwarf GC Theoretical
Model �0/m Density profile VF RHDF Density Profile Density Profile �-rs c-M relation preference

(�2,�2) 0.001 NO YES YES NO – – – YES
0.01 Baryon Baryon YES YES YES YES YES YES
0.1 YES YES YES NO – – – YES
1 YES YES YES NO – – – YES
10 NO YES YES NO – – – YES

(�1,�2) 0.001 NO YES YES NO – – –
0.01 Baryon YES YES NO – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(0,�2) 0.001 NO YES YES NO – – –
0.01 Baryon YES YES NO – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(�2,�1) 0.001 NO YES YES NO – – –
0.01 Baryon Baryon YES YES – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(�1,�1) 0.001 NO YES YES NO – – – YES
0.01 Baryon Baryon YES YES YES YES YES YES
0.1 YES YES YES NO – – – YES
1 YES YES YES NO – – – YES
10 NO YES YES NO – – – YES

(0,�1) 0.001 NO YES YES NO – – –
0.01 Baryon Baryon YES YES – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(�2, 0) 0.001 NO NO YES NO – – –
0.01 Baryon NO NO YES YES YES YES
0.1 YES Baryon YES YES ? YES YES
1 YES YES NO NO – – –
10 NO NO YES NO – – –

(�1, 0) 0.001 NO NO YES NO – – –
0.01 Baryon NO NO YES YES YES YES
0.1 YES Baryon YES YES ? YES YES
1 YES YES NO NO – – –
10 YES NO YES NO – – –

(0, 0) 0.001 NO NO YES NO – – – YES
0.01 YES NO NO YES YES YES YES YES
0.1 YES Baryon YES YES ? YES YES YES
1 YES YES NO NO – – – YES
10 NO NO YES NO – – – YES

SIDM 0.001 YES NO – – – – –
0.01 YES NO – – – – –
0.1 YES NO – – – – –
1 YES NO – – – – –
10 – – – – – – –

CDM – NO NO NO NO ? YES ?

Table 2. SIDM is (�2,�2)-based. (�4, X) are not shown here.

upper limit of the cross section value to be ⇠ 0.1 cm2 g�1.
This would also be the upper limit even when we consider
the baryonic e↵ect, namely the feedback e↵ect from the su-
permassive blackhole, or the active galactic nuclei (AGN),
since such a violent energetic feedback would only produce
a larger core in a smoothed out, shallower gravitational po-

tential created by the self-interaction processes of the 2cDM,
thus widening the discrepancy from the observations.

We have enough to show that a certain set of parameters
for 2cDM leave it a possibility as an alternative DM model
to the CDM model.
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Some 2cDM models* 
simultaneously resolve:



Typical constraints

(MM, JCAP 2014)

"Bullet cluster'' σ/m < 1 cm2/g 2cDM cross-sections σ/m ~ 1...0.1, even...0.01

Stability to decay "mass-eigenstates must decay to leave the lightest only"

∆m/m ~ 10–8  -- enough room to avoid: no 
secondaries to decay into (cf 100keV/1TeV)



Typical constraints

(MM, JCAP 2014)

"Bullet cluster'' σ/m < 1 cm2/g 2cDM cross-sections σ/m ~ 1...0.1, even...0.01

Stability to decay "mass-eigenstates must decay to leave the lightest only"

∆m/m ~ 10–8  -- enough room to avoid: no 
secondaries to decay into (cf 100keV/1TeV)

2cDM looks like any multi-species/composite DM -- allows rapid "reactions" Y→X
⇒ abundance of heavy states must be exponentially suppressed excited,  

inelastic,  
exothermal DM,...

high-z low-z z=0 (now)

freeze-out:
small σa 

X-Y decoupling:
large σSI

Y abundance suppressed  
~ exp(∆E/T)

Early universe "catastrophe"



Typical constraints

Catastrophe isn't  a problem for 2cDM: conversions do not occur before structure formation starts 
(needed to separate mass states)

(MM, JCAP 2014)

JCAP06(2014)063
where

⌘ =
p
2 exp
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◆1/4

⇠
p
2 e�1 (1 + 4/3)1/4 ⇠ O(1). (6.13)

Thus, in this case the overlap is negligible,

I(1) ⇠ (ml/mh)
1/2

⌧ 1. (6.14)

We have found that mass eigenstates can rapidly become well-separated in a gravita-
tional field, where they propagate along significantly di↵erent geodesics, or in flat space-time,
where the local gravitational fields are extremely weak, provided there masses are very dif-
ferent. However, if the mass eigenstates have degenerate masses and are propagating in
Minkovsky space, their wave-packets spread much more rapidly than their centroids move
apart. These mass eigenstates thus remain nearly perfectly overlapped at all times, I(1) ' 1.
Should it be identically unity, no conversions would occur. Due to the slight non-overlap,
the conversion amplitude is small but nonzero, being a factor of (�m/m)2 smaller than
the conversion amplitude in the case of complete separation of the wave-packets. Thus the
conversion cross-section in flat space-time, being proportional to the amplitude squared, is
much smaller than that when mass eigenstates are well-separated, e.g., in the presence of
su�ciently strong gravitational field, thus

�
fst
conv ⇠ (�m/m)4�conv, (6.15)

if �m ⌧ m and �
fst
conv ⇠ �conv otherwise.

7 Implications

There are interesting cosmological implications of the obtained results.
The first implication concerns with cosmological neutrinos. Neutrinos from the cosmic

neutrino background (CNB) have recently become non-relativistic; their thermal velocities
are vth ' 81(1+ z)(eV/m⌫) km s�1 [6], which is of the order of a few hundred to a thousand
km/s, hence they can be trapped in dark matter halos of large galaxies and galaxy clusters [7].
Scattering of neutrinos o↵ matter, though weak (but it can be greatly enhanced by coherent
e↵ects [8]), will result in their mass eigenstate conversions and escape.

Detectors on Earth, if they will ultimately be able to detect CNB neutrinos, should
see the fractional deviation from the uniform composition of order unity for upward vs.
downward going relic neutrinos. Indeed, the non-relativistic neutrino-nucleon cross-section is
�0 ' G

2
FE

2
⌫ ' 5⇥10�56(E⌫/eV)2 cm2 with GF being the Fermi constant of weak interactions.

Thus, for the heaviest species, assuming E
2
⌫ ' �m

2
23 ' 0.0027 eV2, we have �0 ' 1.4 ⇥

10�58 cm2. The e↵ect of coherent scattering increases the cross-section tremendously [8]:
�⌫ ' �0Z

2
N

2, where Z is the charge of atomic nuclei, N ' nV� is the number of nuclei in the
volume V� ' (4⇡/3)�3

dB, n is the number density of nuclei and �dB = h/(m⌫vth) ⇠ 0.5 cm
is the neutrino de Broglie wavelength at z = 0 (note, it is independent of m⌫ for CNB
neutrinos). For Earth, Z ' 25, n ' 1023 cm�3, so the CNB neutrino cross-section in Earth is
�CNB ' 2⇥10�10 cm2. The characteristic number density of the coherent scatterers in Earth
is n� ' 1/V� and the typical distance neutrinos travel in Earth is its diameter, d ' 109 cm,
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before structure formation
after structure formation

time-dependent wave 
packet of a mass eigenstate

JCAP06(2014)063

where�0, mj and vj are the wave-packet width, mass and velocity and j = h, l. The first term
describes a gaussian shape and the second term is simply the phase ikx = i(p/~)x = imvx/~.
Note that �0 is the same for all mass eigenstates because the wave-packets must overlap
completely at t = 0 — the particle is created in a well-defined flavor eigenstate everywhere
(i.e., at any x). Here we consider a one-dimensional case. At any time t > 0 the wave-
packet  j(x, t) is given by the solution of the Schrödinger equation [5] for an initial state
 j(x) ⌘  j(x, 0), i.e.,
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The generalization of this result to three dimensions is straightforward: wave packet spreading
occurs independently in each orthogonal Cartesian direction xj = (x, y, z). This can be seen
from that the gaussian wave-packet in three dimensions is separable into a product of three
one-dimensional gaussians, the Hamiltonian of a non-relativistic free particle is quadratic in
momentum p
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z, and the orthogonal components of p and x commute, [pi, xj ] = 0

if i 6= j. Thus the triple integral in dx0 breaks down into three single integrals. The result
is: the coordinates and velocities in eq. (6.2) become vector quantities.

This wave-function describes motion of j-th eigenstate with velocity vj and the wave-
packet spreading due to the momentum uncertainty, �p�0 ' ~. In general, the velocities
vh, vl are di↵erent so the wave-packets of di↵erent mass eigenstates tend to separate in time:
the gaussian centroids separate as �x(t) ⇠ (vl � vh)t / t. On the other hand, the widths of
the wave-packets also grow in time as �(t) ⇠ (~/mj�0)t / t as t ! 1. Since both grow
linearly in time at late times, there will always be a non-zero overlap of the mass eigenstates.

Interactions of mass eigenstates occur as follows. First, if the mass eigenstate wave-
packets overlap completely, they both interact simultaneously as a flavor wave-function. This
results in elastic scatterings only (flavor is conserved in interactions), because the interaction
hamiltonian, Ṽ , is diagonal is flavor basis, and no m-process can occur. Second, in the oppo-
site case of completely separated mass eigenstates, as in the case of trapping in a gravitational
field discussed earlier, the interaction matrix is non-diagonal, so both elastic scattering and
conversions do occur. Finally, if the mass eigenstates partially overlap, there are non-zero
chances for the particle to interact along both scenarios. In particular, interactions as flavor
eigenstates (i.e., non-separated mass eigenstates) is proportional to the overlap integral of
the mass wave-packets. We calculate the overlap integral now.

A wave-packet given by eq. (6.2) can be written as  j(x, t) = Aj(x, t)ei�j(x,t), where �j
is a real-valued phase and Aj is the real-valued amplitude which determines the shape of the
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Note that x0 and�0 are the same for both mass eigenstates because the particles are produced
as flavor eigenstates, hence the mass eigenstate wave-packets completely overlap at t = 0. If
the particles form an ensemble in thermal equilibrium with some temperature T — the case
that can be relevant to the early universe conditions — the expression for �(t) can readily
be generalized [5] to yield
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The overlap integral of two mass eigenstates, h and l is
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where �2
h and �2

l are given by eqs. (6.4) or (6.5). It’s easy to check that I(0) = 1, that is
the wave-packets overlap completely at t = 0, and 1 > I(t) > 0 at t > 0.

To estimate the rate of m-conversions, we look for the minimum overlap, i.e., for the
asymptotic value of I(t) as t ! 1. The mass eigenstates need not have same momenta or
energy, see discussion in [14, 15], not those assumptions are Lorentz invariant. However, for
the sake of simplicity, here we choose them to have the same momenta1 p, so that vh = p/mh

and vl = p/ml.
First, we consider the case with strong mass-degeneracy: mh ⇡ ml ⇡ m, �m ⌘ mh �
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where ⇠ is a numerical factor of order unity. Indeed, if T = 0, eq. (6.4) holds, hence
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where �p is the momentum uncertainty and we used that �p�x ' ~ with �x ⇠ �0 and
that �p ⇠ p in collisions. In the opposite case when T is large enough for the first term in
the brackets in eq. (6.5) to be neglected, one has
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2kT/m is the thermal energy of a particle. Overall, one can see that

the value of I(1) is fairly insensitive to the model assumptions and the estimate

I(1) ⇠ 1� (�m/m)2 (6.11)

is robust.
Second, if the masses are non-degenerate, mh � ml, then
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1Note that if the momenta of the mass eigenstates are di↵erent, then their wave-packets, eq. (6.2), carry
extra x-dependent phase even at t = 0, hence the particle exhibits flavor oscillations through space.
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where�0, mj and vj are the wave-packet width, mass and velocity and j = h, l. The first term
describes a gaussian shape and the second term is simply the phase ikx = i(p/~)x = imvx/~.
Note that �0 is the same for all mass eigenstates because the wave-packets must overlap
completely at t = 0 — the particle is created in a well-defined flavor eigenstate everywhere
(i.e., at any x). Here we consider a one-dimensional case. At any time t > 0 the wave-
packet  j(x, t) is given by the solution of the Schrödinger equation [5] for an initial state
 j(x) ⌘  j(x, 0), i.e.,
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The generalization of this result to three dimensions is straightforward: wave packet spreading
occurs independently in each orthogonal Cartesian direction xj = (x, y, z). This can be seen
from that the gaussian wave-packet in three dimensions is separable into a product of three
one-dimensional gaussians, the Hamiltonian of a non-relativistic free particle is quadratic in
momentum p

2 = p
2
x+p

2
y+p

2
z, and the orthogonal components of p and x commute, [pi, xj ] = 0

if i 6= j. Thus the triple integral in dx0 breaks down into three single integrals. The result
is: the coordinates and velocities in eq. (6.2) become vector quantities.

This wave-function describes motion of j-th eigenstate with velocity vj and the wave-
packet spreading due to the momentum uncertainty, �p�0 ' ~. In general, the velocities
vh, vl are di↵erent so the wave-packets of di↵erent mass eigenstates tend to separate in time:
the gaussian centroids separate as �x(t) ⇠ (vl � vh)t / t. On the other hand, the widths of
the wave-packets also grow in time as �(t) ⇠ (~/mj�0)t / t as t ! 1. Since both grow
linearly in time at late times, there will always be a non-zero overlap of the mass eigenstates.

Interactions of mass eigenstates occur as follows. First, if the mass eigenstate wave-
packets overlap completely, they both interact simultaneously as a flavor wave-function. This
results in elastic scatterings only (flavor is conserved in interactions), because the interaction
hamiltonian, Ṽ , is diagonal is flavor basis, and no m-process can occur. Second, in the oppo-
site case of completely separated mass eigenstates, as in the case of trapping in a gravitational
field discussed earlier, the interaction matrix is non-diagonal, so both elastic scattering and
conversions do occur. Finally, if the mass eigenstates partially overlap, there are non-zero
chances for the particle to interact along both scenarios. In particular, interactions as flavor
eigenstates (i.e., non-separated mass eigenstates) is proportional to the overlap integral of
the mass wave-packets. We calculate the overlap integral now.

A wave-packet given by eq. (6.2) can be written as  j(x, t) = Aj(x, t)ei�j(x,t), where �j
is a real-valued phase and Aj is the real-valued amplitude which determines the shape of the
wave-packet. Since A
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if wave packets overlap, particles interact coherently (as flavor states) - no conversions



Caveats

too many collisions 
- collapse

some fine tuning of σ to Hubble time  0.001 < σ/m < 1 cm2/g

too few collisions 
- uninteresting

large σ ~ 1 cm2/g ~ 1 barn/GeV not very natural in particle physics

high degeneracy ∆m/m ~ 10–8 not very natural in particle physics - 
possibly needs light mediator

small mass splitting:
Y. Zhang, Phys. Dark Univ. 15 (2017) 
K. Schutz, T.R. Slatyer, JCAP 01 (2015) 021
J. Kopp et al. JHEP 12 (2016) 033
M. Baumgart et al. JHEP 0904:014,2009
...........



+ ∆mc2 

h

l

M

“inelastic recoil”

– ∆mc2 
l

h

M

direct detection

2cDM predictions

indirect detection
h, l

h, l

γ-rays
“γ-ray annihilation 

line triplet” Eγ =mc2  ±  ½ ∆mc2

example, 100 GeV  ± ~ keV 

(MM, PRL 2014)



flavor-mixed DM – just works 
✦ resolves small-scale problems simultaneously across many scales  
✦ cosmologically interesting (v ~ 100 km/s)
✦ σ(v)/m~ 1...0.1...0.01 – consistent with all obs. constraints
✦ ∆m/m ~ 10–8  – can be naturally stable
✦ passes the "early universe catastrophe" challenge
✦ makes predictions for DM detection experiments:  inelastic recoil, gamma triplet

further study – "realistic" simulations with star formation, baryons, feedback,...

Conclusions



HYSICAL
EVIEW
ETTERS

P
R
L

American Physical Society

Articles published week ending   15 AUGUST 2014 

Volume 113, Number 7
Published by 

™

™

PRL
113

(7),070201–079901,15
A

ugust2014
(256

totalpages)

113

7

NEWSPAPER

Simulation of the dark matter distribution in
a 5 Mpc region of space using a two-
component dark matter model. [Mikhail V.
Medvedev, Phys. Rev. Lett. 113, 071303
(2014)]

PHYSICAL REVIEW LETTERS!
Contents

Articles published 9 August–15 August 2014

VOLUME 113, NUMBER 7 15 August 2014

General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.

Instanton Approach to Large N Harish-Chandra-Itzykson-Zuber Integrals .......................................................................... 070201
J. Bun, J. P. Bouchaud, S. N. Majumdar, and M. Potters

Universal Covariance Formula for Linear Statistics on Random Matrices .......................................................................... 070202
Fabio Deelan Cunden and Pierpaolo Vivo

Dissipative Preparation of Spatial Order in Rydberg-Dressed Bose-Einstein Condensates ................................................. 070401
Johannes Otterbach and Mikhail Lemeshko

Finite-Size Scaling at First-Order Quantum Transitions ....................................................................................................... 070402
Massimo Campostrini, Jacopo Nespolo, Andrea Pelissetto, and Ettore Vicari

Tomography by Noise ............................................................................................................................................................ 070403
G. Harder, D. Mogilevtsev, N. Korolkova, and Ch. Silberhorn

Steering Matter Wave Superradiance with an Ultranarrow-Band Optical Cavity ................................................................ 070404
H. Keßler, J. Klinder, M. Wolke, and A. Hemmerich

Competing Regimes of Motion of 1D Mobile Impurities .................................................................................................... 070601
A. Kantian, U. Schollwöck, and T. Giamarchi

Gravitation and Astrophysics

Inflation with Whip-Shaped Suppressed Scalar Power Spectra ............................................................................................ 071301
Dhiraj Kumar Hazra, Arman Shafieloo, George F. Smoot, and Alexei A. Starobinsky

Strong Magnetization Measured in the Cool Cores of Galaxy Clusters .............................................................................. 071302
Ido Reiss and Uri Keshet

Cosmological Simulations of Multicomponent Cold Dark Matter ....................................................................................... 071303
Mikhail V. Medvedev

Elementary Particles and Fields

Holographic Thermalization, Stability of Anti–de Sitter Space, and the Fermi-Pasta-Ulam Paradox ................................. 071601
Venkat Balasubramanian, Alex Buchel, Stephen R. Green, Luis Lehner, and Steven L. Liebling

Additional Strange Hadrons from QCD Thermodynamics and Strangeness Freezeout in Heavy Ion Collisions .............. 072001
A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, Swagato Mukherjee,
H. Ohno, P. Petreczky, C. Schmidt, S. Sharma, W. Soeldner, and M. Wagner

Nuclear Physics

Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at
RHIC ................................................................................................................................................................................. 072301

L. Adamczyk et al. (STAR Collaboration)

(Continued Inside)

Selected for a Viewpoint in Physics. Please visit http://physics.aps.org/.
By suggesting a few manuscripts each week, we hope to promote reading across fields. Please see our Announcement Phys. Rev. Lett. 98, 010001 (2007).

Copyright 2014 American Physical Society

0031-9007(20140815)113:7;1-6

iopscience.org/jphysa

ISSN 1751-8113

Journal of Physics A

Volume 43   Number 37   17 September 2010


