Gravitational Lensing of the Cosmic Microwave Background: A New Frontier to Probe Fundamental Physics

> Neelima Sehgal Stony Brook University

> KITP - May 25th, 2018

Lensing of the Cosmic Microwave Background

- Lensing of the Cosmic Microwave Background
- Neutrino Mass

- Lensing of the Cosmic Microwave Background
- Neutrino Mass
- Curvature, Dark Energy

- Lensing of the Cosmic Microwave Background
- Neutrino Mass
- Curvature, Dark Energy
- Gravitational Waves from Inflation

- Lensing of the Cosmic Microwave Background
- Neutrino Mass
- Curvature, Dark Energy
- Gravitational Waves from Inflation
- Dark Matter

- Lensing of the Cosmic Microwave Background
- Neutrino Mass (large-scale lensing)
- Curvature, Dark Energy (small-scale lensing)
- Gravitational Waves from Inflation (delensing)
- Dark Matter (ultra-high resolution lensing)

- Lensing of the Cosmic Microwave Background
- Neutrino Mass (large-scale lensing)
- Curvature, Dark Energy (small-scale lensing)
- Gravitational Waves from Inflation (delensing)
- Dark Matter (ultra-high resolution lensing)

Cosmic Microwave Background

CMB Lensing

Image Credit: ESA

Unlensed CMB

Lensed CMB

Lensing induces mode coupling

1.) Smooths CMB 2-pt function

Lensing induces mode coupling

1.) Smooths CMB 2-pt function

2.) Creates non-zero CMB 4-pt function

Lensing induces mode coupling

1.) Smooths CMB 2-pt function

2.) Creates non-zero CMB 4-pt function

 $\langle T(\mathbf{l} + \mathbf{L})T^*(\mathbf{l}) \rangle_{\rm CMB} \propto \phi(\mathbf{L})$

Lensing induces mode coupling

Lensing induces mode coupling

1.) Smooths CMB 2-pt function 2.) Creates non-zero CMB 4-pt function $\langle T(\mathbf{l} + \mathbf{L})T^*(\mathbf{l}) \rangle_{\rm CMB} \propto \phi(\mathbf{L})$ $\hat{\phi}(\mathbf{L}) \propto \int_{\mathbf{l}} T(\mathbf{l} + \mathbf{L})T^*(\mathbf{l}) \times \text{filter}$

Lensing induces mode coupling

All quadrilaterals whose diagonal has length L

First Measurements of CMB Lensing

Planck Paper 15, 2015 (1502.01591)

First Measurements of CMB Lensing

Planck Paper 15, 2015 (1502.01591)

1. Directly sensitive to matter via gravitational lensing

- 1. Directly sensitive to matter via gravitational lensing
- 2. Source light is at well-defined redshift

- 1. Directly sensitive to matter via gravitational lensing
- 2. Source light is at well-defined redshift
- 3. Properties of primordial CMB are well understood

- 1. Directly sensitive to matter via gravitational lensing
- 2. Source light is at well-defined redshift
- 3. Properties of primordial CMB are well understood
- 4. The CMB is behind all matter structures

- Lensing of the Cosmic Microwave Background
- Neutrino Mass (large-scale lensing)
- Curvature, Dark Energy (small-scale lensing)
- Gravitational Waves from Inflation (delensing)
- Dark Matter (ultra-high resolution lensing)

First Measurements of CMB Lensing on Large Scales

Planck Paper 15, 2015 (1502.01591)

Energy Density in the Universe

Energy Density in the Universe

Energy Density in the Universe

Copyright © 2013 wordlessTech

Larger neutrino mass → less cold dark matter → less dark matter structure

CMB Lensing Power Spectrum Sensitive to Neutrino Mass

Figure credit: Alexander van Engelen (postdoc at CITA)

Suppression of Matter Power Spectrum Due to Massive Neutrinos

Neelima Sehgal, Stony Brook

Figure credit: K. N. Abazajian et al

Neutrino Mass Detection

Neutrino Mass Detection

Neutrino Mass Detection

At least 3-sigma detection with BAO and tau prior

Neutrino Mass Detection

Outline

- Lensing of the Cosmic Microwave Background
- Neutrino Mass (large-scale lensing)
- Curvature, Dark Energy (small-scale lensing)
- Gravitational Waves from Inflation (delensing)
- Dark Matter (ultra-high resolution lensing)

First Measurements of CMB Lensing on Small Scales

APS/Alan Stonebraker

First Measurements of CMB Lensing on Small Scales

Madhavacheril, Sehgal, et. al., PRL, 114, 2015

We detect halo lensing from 12,000 stacked CMASS galaxies at <mark>S/N of 3.2 sigma</mark>

Best fit: $M_{200} = (2.0 \pm 0.7) \times 10^{13} h^{-1} M_{\odot}$ and $c_{200} = 5.4 \pm 0.8$

Can Take Ratio of Two Lensing Measurements

APS/Alan Stonebraker

First Measurement of Ratio of Optical Lensing to CMB Lensing

Miyatake, Madhavacheril, NS et al. PRL, 118, 2017

Das and Spergel 2009

Can achieve 1% distance ratio with CMB-S4 + LSST

Das and Spergel 2009

Outline

- Lensing of the Cosmic Microwave Background
- Neutrino Mass (large-scale lensing)
- Curvature, Dark Energy (small-scale lensing)
- Gravitational Waves from Inflation (delensing)
- Dark Matter (ultra-high resolution lensing)

History of the Universe

Figure Credit: BICEP2

History of the Universe

History of the Universe

• Amplitude of gravitational waves determines energy scale when inflation happened

• Amplitude of gravitational waves determines energy scale when inflation happened

$$V^{1/4} \simeq 2.2 \times 10^{16} \text{ GeV} \times \left(\frac{r}{0.2}\right)^{1/4}$$

• Amplitude of gravitational waves determines energy scale when inflation happened

$$V^{1/4} \simeq 2.2 \times 10^{16} \text{ GeV} \times \left(\frac{r}{0.2}\right)^{1/4}$$

 Doorstep of quantum gravity - a few orders of magnitude below the Planck scale

Figure Credit: S&T: Leah Tiscione

CMB Polarization

CMB Polarization from Gravitational Waves

Polarization pattern from gravitational waves

Effect of Gravitational Lensing

Delensing

• Delensing = undo the lensing of the primordial CMB

Delensing

• Delensing = undo the lensing of the primordial CMB

$$T^{L}(\hat{n}) = T^{U}(\hat{n} + \nabla \phi(\hat{n}))$$
$$T^L(\hat{n}) = T^U(\hat{n} + \underbrace{\nabla \phi(\hat{n})}_{\text{Deflection angle}}$$

$$T^{L}(\hat{n}) = T^{U}(\hat{n} + \nabla \phi(\hat{n}))$$
Projected Deflection angle lensing potential

• Delensing = undo the lensing of the primordial CMB

Shift pixels backward using map of projected large-scale structure to reconstruct unlensed CMB

Delensing Tightens Parameter Constraints Including on tensor-to-scalar ratio, r

Figure credit: CMB-S4 Science Book

Outline

- Lensing of the Cosmic Microwave Background
- Neutrino Mass (large-scale lensing)
- Curvature, Dark Energy (small-scale lensing)
- Gravitational Waves from Inflation (delensing)
- Dark Matter (ultra-high resolution lensing)

CMB Lensing Power Spectrum measured on scales L < 3000 so far (k < 1 Mpc^-1)

CMB Lensing Power Spectrum measured on scales L < 3000 so far (k < 1 Mpc^-1)

Want to measure scales L ~ 30,000 (k ~ 10 Mpc^-1 and M < 10^9 Msun)

CMB Lensing Power Spectrum measured on scales L < 3000 so far (k < 1 Mpc^-1)

Want to measure scales L ~ 30,000 (k ~ 10 Mpc^-1 and M < 10^9 Msun)

CMB Lensing Power Spectrum measured on scales L < 3000 so far (k < 1 Mpc^-1)

Want to measure scales L ~ 30,000 (k ~ 10 Mpc^-1 and M < 10^9 Msun)

at these scales sensitive to structure at z~1-3

CMB Lensing Power Spectrum measured on scales L < 3000 so far (k < 1 Mpc^-1)

Want to measure scales L ~ 30,000 (k ~ 10 Mpc^-1 and M < 10^9 Msun)

at these scales sensitive to structure at z~1-3

Contrast between CDM and models that wash out small-scale structure is larger at higher redshifts

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Sky fraction	Noise	Signal-to-noise ratio	
(f _{sky})	(µK-arcmin)	18″	9.5 ″
		Resolution	Resolution
0.1	0.5	3.9	5.2
0.025	0.1	10.1	15.9
0.1	0.1	20.2	31.9

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Sky fraction	Noise	Signal-to-noise ratio	
(f _{sky})	(µK-arcmin)	18″	9.5 ″
		Resolution	Resolution
0.1	0.5	3.9	5.2
0.025	0.1	10.1	15.9
0.1	0.1	20.2	31.9

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Sky fraction	Noise	Signal-to-noise ratio	
(f _{sky})	(µK-arcmin)	18″	9.5 ″
		Resolution	Resolution
0.1	0.5	3.9	5.2
0.025	0.1	10.1	15.9
0.1	0.1	20.2	31.9

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Sky fraction	Noise	Signal-to-noise ratio	
(f _{sky})	(µK-arcmin)	18″	9.5 ″
		Resolution	Resolution
0.1	0.5	3.9	5.2
0.025	0.1	10.1	15.9
0.1	0.1	20.2	31.9

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Sky fraction	Noise	Signal-to-noise ratio	
(f _{sky})	(µK-arcmin)	18"	9.5 ″
		Resolution	Resolution
0.1	0.5	3.9	5.2
0.025	0.1	10.1	15.9
0.1	0.1	20.2	31.9

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2017, arXiv:1710.03747

Sky fraction	Noise	Signal-to-noise ratio	
(f _{sky})	(µK-arcmin)	18"	9.5 ″
		Resolution	Resolution
0.1	0.5	3.9	5.2
0.025	0.1	10.1	15.9
0.1	0.1	20.2	31.9

Grey: S/N ~ 5 for distinguishing between CDM and FDM/WDM Requires: CMB-S4-type

camera on existing 50-meter dish

Black: S/N ~ 30 for distinguishing between CDM and FDM/WDM

Requires: Camera few times more sensitive than CMB-S4 on existing 50-meter dish

• Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:
 - Multi-frequency observations (lensing is not freq dependent but foregrounds are)

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:
 - Multi-frequency observations (lensing is not freq dependent but foregrounds are)
 - Filter out all scales larger than 1 arcmin (L<5000) removes 2pt clustering of extragalactic halos and most emission from the Galaxy

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:
 - Multi-frequency observations (lensing is not freq dependent but foregrounds are)
 - Filter out all scales larger than 1 arcmin (L<5000) removes 2pt clustering of extragalactic halos and most emission from the Galaxy
 - Remove resolved point sources above some flux by filtering with the beam profile

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:
 - Multi-frequency observations (lensing is not freq dependent but foregrounds are)
 - Filter out all scales larger than 1 arcmin (L<5000) removes 2pt clustering of extragalactic halos and most emission from the Galaxy
 - Remove resolved point sources above some flux by filtering with the beam profile
 - kSZ has no freq dependence and is on small scales but lensing signal is correlated with the background gradient and kSZ is not

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:
 - Multi-frequency observations (lensing is not freq dependent but foregrounds are)
 - Filter out all scales larger than 1 arcmin (L<5000) removes 2pt clustering of extragalactic halos and most emission from the Galaxy
 - Remove resolved point sources above some flux by filtering with the beam profile
 - kSZ has no freq dependence and is on small scales but lensing signal is correlated with the background gradient and kSZ is not
 - Use "source-hardened" lensing estimators (Osborne, Hanson, Dore 1310.7547)

- Foregrounds: extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters, kinetic SZ, Galactic dust and synchrotron
- Handles on foregrounds:
 - Multi-frequency observations (lensing is not freq dependent but foregrounds are)
 - Filter out all scales larger than 1 arcmin (L<5000) removes 2pt clustering of extragalactic halos and most emission from the Galaxy
 - Remove resolved point sources above some flux by filtering with the beam profile
 - kSZ has no freq dependence and is on small scales but lensing signal is correlated with the background gradient and kSZ is not
 - Use "source-hardened" lensing estimators (Osborne, Hanson, Dore 1310.7547)
 - Use shear-only estimator which is insensitive to foregrounds with isotropic 2D power spectra (Schaan and Ferraro - 1804.06403)
The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Green Bank Telescope -60 meters (~10 arcsec resolution)

Location of Large Millimeter Telescope

The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Green Bank Telescope -60 meters (~10 arcsec resolution)

Location of Large Millimeter Telescope

Location of Green Bank Telescope

The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Green Bank Telescope -60 meters (~10 arcsec resolution)

Location of Large Millimeter Telescope

Need CMB-S4-type camera or better on one of these dishes

Location of Green Bank Telescope

The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Green Bank Telescope -60 meters (~10 arcsec resolution)

Need CMB-S4-type camera or better on one of these dishes

Traditional CMB science also gains from better camera and higher resolution

Location of Green Bank Telescope

Location of Large Millimeter Telescope

The Large Millimeter Telescope - 50 meters (~10 arcsec resolution)

The Green Bank Telescope -60 meters (~10 arcsec resolution)

Location of Large Millimeter Telescope

Need CMB-S4-type camera or better on one of these dishes

Traditional CMB science also gains from better camera and higher resolution (e.g. r and N_{eff})

Location of Green Bank Telescope

 Precision Measurements of CMB Lensing Powerful Next Frontier of CMB Research

- Precision Measurements of CMB Lensing Powerful Next Frontier of CMB Research
- Detect Neutrino Mass with Large-scale CMB Lensing Power Spectrum

- Precision Measurements of CMB Lensing Powerful Next Frontier of CMB Research
- Detect Neutrino Mass with Large-scale CMB Lensing Power Spectrum
- Probe Curvature and Dark Energy with Small-scale Lensing Ratios

- Precision Measurements of CMB Lensing Powerful Next Frontier of CMB Research
- Detect Neutrino Mass with Large-scale CMB Lensing Power Spectrum
- Probe Curvature and Dark Energy with Small-scale Lensing Ratios
- With Delensing Playing Integral Role, May Detect Primordial Gravitational Waves

- Precision Measurements of CMB Lensing Powerful Next Frontier of CMB Research
- Detect Neutrino Mass with Large-scale CMB Lensing Power Spectrum
- Probe Curvature and Dark Energy with Small-scale Lensing Ratios
- With Delensing Playing Integral Role, May Detect Primordial Gravitational Waves
- Ultra-High-Resolution CMB Lensing Power Spectrum can Probe Small-scale Matter Power Spectrum