Cooling of self-interacting dark matter halos & the birth of the first supermassive black holes

Yi-Ming Zhong

Boston University

In collaboration w/ R. Essig, S. McDermott, H.-B. Yu Work in progress

The Small-Scale Structure of Cold(?) Dark Matter, KITP, 05/16/2018

The dark sector paradigm

The dark sector paradigm

What if dark sectors completely decouple from the visible sector?

Use gravitational probes

Example: self-interacting DM

1. Self-interactions are common for normal matter

Why not dark matter?

- 2. Significant self-interaction in DM dense regions (e.g. center of a halo)
- 3. Negligible self-interaction in DM sparse regions (e.g. large scale)

Spergel & Steinhardt '00 see review by Tulin & Yu '16

Probing SIDM in astrophysics

Cluster crossing

Galaxy morphism

Dark sector is richer

e.g. Ackerman et al '09, Feng et al '09 '10, Loeb & Weiner '10, Tulin et al '10 '12 '13 Boddy et al'16.....

Outline

- Gravothermal evolution
- Simulation
- Results and constraints on SIDM cooling
- * Give birth to the first super massive black holes (SMBH)
- Summary

Why do SIDM halos collapse?

- Because the SIDM halo gets cooled
- Elastic scattering
 ⇒ redistribute kinetic energy
 - \Rightarrow heat flow
 - ⇒ gravothermal instability
- Dissipative scattering
 ⇒ lose energy through dark radiation

Virial theorem: 2 K.E. + P. E. = 0

$$\Rightarrow$$
 E_{tot} = – K.E.

$$\Rightarrow$$
 K.E. / E_{tot} < 0

Negative heat capacity

Take a halo w/ an iso-thermal profile

Velocity-distribution of DM particles

Particles in the "tail" can evaporate

K.E.↓ P.E.↑

But overall 2 K.E. + P.E. < 0

Out of virial

Gravity is no longer supported by random motion

Back to virial:

Averaged velocity increases (temp. 1)

A fatter velocity distribution

Core region of a halo

Yi-Ming Zhong (BU)

More evaporation Further shirk Core gets hotter Even more evaporation

.

Runaway collapse!

Core region of a halo

Bulk cooling

- Dissipative scattering causes extra kinetic energy loss (e.g. carried away by dark radiations)
- Assume the halo is optical thin to the dark radiation (no reabsorption)
- Happens everywhere

Simulation

Method

Semi-analytic method	N-body simulation
approximate	first principle
easy to resolve deep profiles	hard to resolve deep profiles
more intuitive physical picture to interpret results	conceptually simple, but difficult to interpret results
can be done on laptop, easy for parameter scan	computational costly, especially for high resolution

Fluid model

- Used to study isolated, non/low-spin, singlecomponent, no/low-baryonic content & spherical halo
- First adopted in studies of gravothermal evolution of the globular clusters
 Hachisu et al '78, Lynden-Bell & Egglet

Hachisu et al '78, Lynden-Bell & Eggleton, '80; Inagaki & Lynden-Bell '83; Heggie '84; Goodman '84;

 Later adopted in studies of the gravothermal evolution of the SIDM halos

> Balberg & Shapiro, '02; Balberg et al '02; Ahn & Shapiro, '08; Koda & Shapiro, '11; Pollack et al, '15

Fluid model

- Assume each shell is in its thermal equilibrium. Different shells have different temperatures.
- Evolution: temperature change → hydrostatic relaxation → temperature change → hydrostatic relaxation → ...

Sets of equations

1. Mass conservation

 ∂M $-=4\pi r^2 \rho$ $\frac{\partial r}{\partial r}$

2. Momentum conservation

p: pressure (= ρν²) v: 1-dim vel. dispersion ∂

 $GM\rho$

 r^2

Sets of equations

3. Energy conservation

conductivity

Yi-Ming Zhong (BU)

More on *k*

- Collisions w/ other particles
- Characterized by mean free path of the self-scattering:

 $\lambda = 1/(n\sigma)$

• $\kappa_{\rm smfp} \sim n\nu\lambda \sim \frac{\nu}{\sigma}$

Lynden-Bell & Eggleton, '80

- Collisions w/ the "wall"
- Characterized by the orbit height of the halo

 $H=\sqrt{\nu^2/4\pi G\rho}$

•
$$\kappa_{\rm lmfp} \sim (n\nu H) \frac{H/\nu}{t_r} \sim \frac{n\nu^3 \sigma}{Gm}$$

More on *k*

- $Kn \equiv \lambda/H$
 - $Kn > 1 \Rightarrow$ gravitational conduction dominates (long-mean-free-path region)
 - $Kn < 1 \Rightarrow$ self-interaction conduction dominates (short-mean-free-path region)
- Combine the two $\kappa = (\kappa_{\rm lmfp}^{-1} + \kappa_{\rm smfp}^{-1})^{-1}$

More on C

We consider collisional cooling

in unit vol.

& unit time

energy loss per collision

 $\nu_{\rm loss} \equiv \sqrt{E_{\rm loss}/m}$

a "soft" cutoff

Other setup

• Initial density profile: NFW ρ

$$\rho = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

• Boundary condition:

$$M = 0, L = 0 @ r = 0$$

 $M = const., L = 0 @ r = r_{max}$

- Small self-interaction strength \Rightarrow evolution starts from the optical thin region
- Mild cooling ⇒ cooling time >> free-fall time
 ⇒ not isothermal/free-fall collapse

Result

Evolution of Density Profile

Evolution of density profile

Evolution of velocity dispersion profile

The collapse time

Add a mild cooling

Add a mild cooling

The reduction in the collapse time

Scan over $(\hat{\sigma}, \hat{\sigma}', \hat{\nu}_{\rm loss})$ and compute the time reduction

Back to dimensional quantities

Halos with higher concentrations collapse faster

More complicated dependence on halo mass

Dwarf/LSB disfavored

Dwarfs/LSB w/ low-baryonic content

 $c_{200} \ M_{200} \ [M_{\odot}]$

 1.5×10^{9}

 9×10^{9}

 3×10^{10}

 3×10^{10}

 3×10^{10}

 6×10^{10}

 8×10^{10}

 8×10^{10}

 8×10^{10}

 9×10^{10}

 9×10^{10}

 9×10^{10}

 10^{11}

Name

Kamada et al, '16, data from Oh eta al '15

Not see core collapse

UGC 128

Dwarf/LSB disfavored

Dwarfs/LSB w/ low-baryonic content

Name	c_{200}	$M_{200} \left[M_{\odot} \right]$
UGC 4483	6.4	1.5×10^9
DDO 126	16.1	9×10^9
DDO 133	10.4	1.2×10^{10}
DDO 154	16.8	$1.3 imes 10^{10}$
NGC 2366	14.7	2.3×10^{10}
UGCA 442	11.2	3×10^{10}
UGC 1281	12.2	3×10^{10}
DDO 52	8	3×10^{10}
DDO 87	15.3	3.5×10^{10}
NGC 3109	11.9	5.5×10^{10}
NGC 1560	11.9	6×10^{10}
UGC 3371	7.4	$8 imes 10^{10}$
LSB F583-1	11.1	$8 imes 10^{10}$
UGC 5750	13.9	$8 imes 10^{10}$
IC 2574	7.4	9×10^{10}
UGC 3371	6.4	9×10^{10}
UGC 5750	7.3	9×10^{10}
UGC 11707	5.4	10^{11}
IC 2574	10.5	1.5×10^{11}
UGC 5005	7.7	1.8×10^{11}
UGC 128	9.2	3.8×10^{11}

Not see core collapse

Discussions

- Environment effects:
 - Major merger \Rightarrow re-virialize the merger halo \Rightarrow reset the clock of the evolution
 - Continuous infall/minor merger \Rightarrow heat the halo if significant
- Baryonic effects
- Spin

Give birth to the first SMBHs

The first SMBHs puzzle

- We see several BH's with mass ≥ 10⁸ M☉ at a very high redshifts (z > 6). e.g.:
 - J1342+0928: M = 7.8 × 10⁸ M☉, z = 7.54
- Bañados et al, '17
 - J1120+0641: $M = 2.0 \times 10^9 M_{\odot}$, z = 7.09 Mortlock et al, '11
 - J0100+2802: $M = 1.2 \times 10^{10} M_{\odot}$, z = 6.33 Wu et al, '15
- So massive & so ancient. How do they form??

The first SMBH puzzle

see review by Volonteri '10

- Classical solution:
 - PopIII star collapses (10-100 M_{\odot}) \Rightarrow seed BH \Rightarrow

Eddington accretion \Rightarrow massive BH

Need to fine tune the \bullet baryonic physics

The SMBH puzzle

- More likely solutions:
 - 1. Faster accretion: BH merger...
- 10⁹ 10⁸ Ma s [M_o] Larger seed BH: 2. 10⁷ 10⁶ gravothermal collapse 10⁵ of SIDM halos, Balberg & Shapiro '02, 10⁴ Pollack et al '15 direct collapse of pre-10³ galactic gas discs... 10² 20 10 30 Lodato & Natarajan '06 Redshift

10¹¹

10¹⁰

from left to right:

J1342+0928, J1120+0641, J0100+2802

Brief history of SMBH

 Take an initial halo from cosmological density perturbation
 (e.g. 3σ fluctuation from Press-Schechter)

Brief history of SMBH

2. Collapse according to gravothermal evolution

Brief history of SMBH

3. Eddington accretion ($t_{Edd} = 450$ Myr, $\epsilon = 0.1$)

Preliminary result

Yi-Ming Zhong (BU)

Discussions

• Environment effects:

The lucky few??

- Major merger ⇒ re-virialize the merger halo ⇒
 reset the clock of the evolution
- Continuous infall/minor merger \Rightarrow heat the halo if significant
- Baryonic effects
- Spin

Observation

- Look into the position of SMBH (at the halo center) and the inner density profile of the host halos (cuspy w/ logslope ~-2)
 [different from "SIDM accretion"]
- James Webb Space Telescope has the capacity to discover more SMBH's
 ⇒ sharpen the SMBH puzzle
- Discover SMBHs in ultra-diffuse dwarfs
 ⇒ strong support for SMBH from collapsed DM halo

Summary

- DM self-interactions (elastic/dissipative) may change halos' evolution. They can be probed by astronomical observations.
- The collapsed halo provide new ways to form the SMBH's. (SMBH's are likely surrounded by cuspy inner profiles.)

Backup

Calibration

