Energetics in signaling and development

Joe Howard Molecular Biophysics & Biochemistry

> KITP Santa Barbara December 19, 2019

Yale UNIVERSITY

Dynamic morphology of cells Neuron Hair bundle

How do the molecules build and move structures much larger than molecular dimensions?

Active materials: there is a constant flow of materials and

energy!

Red blood cell (8 µm across)

10 µm

Mitotic spindle (10 µm pole-to-pole) Zebrafish embryo (800 µm diameter)

(8 µm high)

Two energetic stories

- 1. Early development in zebrafish
- 2. Molecular motors

8 s counter: Time is from 0:45 to 17:00 hrs post fertilization (nonlinear replay speed) Development of the fish

Impossibly complicated BUT ... Remarkably robust and stereotyped (good for experiments)

How much energy is used?

Movie: RO Karlstrom & DA Kane, Development 1996

Reductive cleavage stage (Early divisions without growth)

Synchronous up to the tenth division

Movie: RO Karlstrom & DA Kane, Development 1996

Measurement of embryonic heat flow by isothermal calorimetry

Embryogenesis is exothermic: Heat flows out of the embryo

Similar to the "basal metabolic rate" defined by West and many others) of fish and humans at rest of 1 W/kg

Heat flow measures the enthalpy changes of all biochemical reactions in the embryo

Two other components

The oscillatory component has the same period as the cell cycle

The cell cycle period is roughly 15 minutes, increasing with cycle number

The oscillatory component does not depend on DNA Replication, mitosis or cell division

Nocodazole blocks DNA replication and mitosis

Embryonic heat flow peaks during mitotic entry and troughs during mitotic exit

Heat cannot be produced significantly by DNA replication or mitosis!

If it were either, then the oscillatory component would increase exponentially in amplitude

Modeling shows that protein phosphorylation and dephosphorylation has the right phase and amplitude (within an order of magaitude)

Model after Tsai, Theriot and Ferrell (2014). PLoS Biol 12, e1001788–15.

Question: How much energy do you need to run a clock accurately?

What about the slow component?

The slow component depends on proliferation: It is blocked by nocodazole

Maintenance and synthesis costs of surface area may account for the increasing trend

Table 2: Estimated energetic parameters at 28.5 °C

Parameter	Estimates		Values from fits
Volume term ¹ , <i>A</i>	$90 \text{ nJ} \cdot \text{s}^{-1}$		$52 \pm 12 \text{ nJ} \cdot \text{s}^{-1}$
Area pre-factor ² , B	β (maintenance)	γ (production)	
	$\beta_{\text{ATPase}^3} = 0.24 \cdot 10^{-3}$ pJ \cdot s^{-1} \cdot \mumber m^{-2}	$\gamma_{\text{lipid}}^4 = 0.12 \text{ to } 24 *$ pJ · μm^{-2}	
	$\beta_{\text{turnover}}{}^{5} = 0.02 \cdot 10^{-3}$ $\text{pJ} \cdot \text{s}^{-1} \cdot \mu\text{m}^{-2}$	$\gamma_{\text{protein}^6} = 4.3 \text{ to } 128^*$ pJ · μm^{-2}	
	$B = \left(\sum \beta_i + \frac{\ln(2)}{3T} \sum \gamma_i\right) \cdot S_1 = 0.9 \text{ to } 32 \text{ nJ} \cdot \text{s}^{-1*} \text{ (see}^{7,8)}$		$8.2 \pm 3.2 \text{ nJ} \cdot \text{s}^{-1}$

Production costs from Lynch & Marinov 2015, 2017 Maintenance costs from membrane ATPases (e.g. ion pumps) Summary of heat dissipation in early embryogenesis

- 1. Initial level: basal metabolic rate
- 2. Oscillations: cell cycle oscillator
- 3. Slow increase: surface area increase

Two energetic stories

- 1. Early development in zebrafish
- 2. Molecular machines

We make astronomical amounts of DNA!

Einstein young

Einstein old

≈1 light year of DNA is synthesized and segregated during the life of a 70-year old (≈10,000,000,000,000 kilometers) John Diffley

X Inactivation and Epigenetics

Chromosome and Kinetochore

Haemoglobin and Sickle Cell Anaemia

Drew Berry Cell Animator Walter and Eliza Hall Insitute Melbourne, Australia

http://www.wehi.edu.au/wehi-tv/wehitv

DNA Central Dogma Part 1 - Transcription DNA Central Dogma Part 2 - Translation

Molecular Visualisations of DNA

DNA polymerase

http://www.wehi.edu.au/wehi-tv/wehitv

a Hallatte

wehi.e

My favorite molecular machine: kinesin

The inner life of the cell (Harvard Univ.)

What are molecular machines?

Molecular machines are enzymes which convert **chemical energy** (usually in the form of ATP) into **mechanical work** (protein conformational changes) that is used to power motility, synthesis (DNA, RNA, sugars, polymers), membrane fusion, **signaling**, etc. etc.

Molecular machines differ from man-made engines that use heat or elecric fields as an intermediate between chemical energy (e.g. oil) and mechanical work

ATP is the universal energy currency in cells

 $MW \approx 500$

We consume our body weight of ATP every day!

Fact or fiction?

The inner life of the cell (Harvard Univ.)

Single-molecule fluorescence assay Kinesin-GFP plus end minus end **Microtubule** Antibody

Glass surface

with Stefan Diez

Kinesin is "processive": one molecule takes hundreds of steps

+ATP (the chemical fuel)

Stefan Diez

Kinesin takes 8-nm steps

ATP hydrolysis is required for motility

Microtubule-Stimulated ATPase Rates of Single Kinesin Molecules Attached to Beads

Tubulin concentration (µM)

Measure the speed under identical conditions

Coy et al. 1999

David Coy

Bead assay with purified kinesin

real time Speed ≈ 800 nm/s

Kinesin takes one 8-nm step per ATP hydrolyzed

Speed ±SE	ATPase ±SE	Distance/ATP	Stoichiometry
(nm/s)	(s ⁻¹)	(nm/ATP)	(steps/ATP)
772 ± 29	88 ± 6	8.7 ± 0.7	1.08 ± 0.09

Coy et al. 1999

Mechanics of the kinesin motor

Single molecules move processively (up to 1000 nm) 8 nm steps (between tubulin dimers) 1 ATP hydrolyzed per step 800 nm/s (plenty enough to Maximum velocity: Maximum force: 6 pN Maximum work: Energy from ATP hydrolysis 100 pN.nm (at cell conc.)

Maximum efficiency:

move a vesicle) 48 pN.nm (=6 pN x 8 nm) $(\sim 25 kT)$ ~50%

But how does it move?

Kinesin superfamily of motor proteins

Mitosis and meiosis Organelle transport

Mitosis and meiosis Organelle transport

Mitosis and meiosis Organelle transport

Mitosis and meiosis Organelle transport Lawrence et al. 2002

Kinesin-8 (depolymerizing kinesin)

Mitosis and meiosis Organelle transport Lawrence et al. 2002

Kinesin-8 regulates the length of the mitotic spindle

Control

Kinesin-8 RNAi

Drosophila S2 cells Goshima et al. 2005

(also true in yeast and human cells)

Depolymerization assay

Kinesin-8 is a microtubule depolymerase

GMPCPP-tubulin

Which end is disassembled?

Which end is disassembled?

Kinesin-8 is a plus-end depolymerase

Kinesin-8 depolymerization is length dependent!

How can a small motor (10 nm) know the length of a long microtubule (10 μ m)?

Kinesin-8 is a highly processive motor

GMPCPP-tubulin Kip3p-GFP

Varga et al. 2006, 2009

Antenna model

random binding along length

Kinesin-8 is a **processive** motor but a **low-stoichiometry** depolymerase ⇒ length-dependent depolymerization

Kinesin-8 measures length by pacing out the microtubule!! Varga et al. 2009

Hypothesis: Negative feedback by kinesin-8 sets the length of Growth or shrinkage

 $^{10}\ \mu\text{m}$ Drosophila S2 cells

Length Set length

Howard & Hyman 2007

Goshima et al. 2005

Hypothesis: ensembles of motors perform mechanical computations

Cell division

Hearing (spindle length) (Stereocilia length)

Motility (Flagella length)

10 µm

Measuring length is energetically expensive!

 $4 \ \mu m$

Each 8-nm step costs 1 ATP! ⇒ up to 1000 ATPs per tubulin dimer removed! This is VERY expensive!!_{Varga et al. 2009}

Mitosis and meiosis Organelle transport

Kinesin-13 depolymerizes microtubules from both ends

Requires ATP hydrolysis!

50X time 5 μm

Stefan Diez

Kinesin-13 targets ends by diffusion and capture

General question: how much do cells pay for information?

We have really no idea!

Information and computation are very expensive relative to housekeeping functions

facebook

Log In

Forgotten account?

Present members Kris Kuo, spastin Ivy Huang, Kip2 Sonal Shree, dendrites Sabya Sutradhar, dendrites Olivier Trottier, dendrites Former members Stefan Diez, T.U. Dresden Gary Brouhard, McGill U. Maria Zanic, Vanderbilt U. Melissa Gardner, U. Minnesota Vlado Varga, Czech Academy of Sciences Erik Schäffer, U. Tübingen Anneke Hibbel, U. Zurich