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What determines What determines TTCC ?  ?  

• Answer from chemistry 

• Answer from superconductivity phenomenology

• Answer from microscopic model parameters 
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Answer from chemistry  Answer from chemistry  

 apart from disorder such as Zn impurities

• Hole concentration
– Tc/Tc,max vs δ curve is universal

• Number of CuO2 layers
– determines Tc,max

• Crystal structure: BSCCO, YBCO, LSCO, ….  •
• especially the position of apical oxygen

– determines Tc,max
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• Answer from chemistry 

• Answer from superconductivity phenomenology
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Answer from superconductivity phenomenology   Answer from superconductivity phenomenology   

• Binding energy of a Cooper pair                      
= gap magnitude ∆s

• Phase coherence between Cooper pairs        
= superfluid density ns
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La2-xSrxCuO4
x=0.15

Tc = 41 K

TTc,c,maxmax vs superconducting gap, vs superconducting gap, ““ small pseudogapsmall pseudogap””

∆SC ~ 20 meV

∆SC ~ 50 meV

K. Tanaka et al, T. Yoshida et al.
J. M. Harris et al., PRB ‘96
A. Ino et al., PRB ‘02
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D. L. Feng et al., Science ‘00

Peak at Peak at kk ~ (~ (ππππ, 0) and superfluid density , 0) and superfluid density 
in Biin Bi22SrSr22CaCuCaCu22OO8+8+δδδδ

DOS at EF

condensation
energy

superfluid 
density

supercond. 
peak ratio

D.L. Feng et al., PRL ‘02

Gap magnitude and phase coherence Gap magnitude and phase coherence 
in singlein single--, double, double-- and tripleand triple--layer BSCCOlayer BSCCO

- Both pairing strength and phase coherence is important for high Tc
- Interlayer tunneling is irrelevant to high Tc

Smaller bilayer splitting
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What determines What determines TTCC ?  ?  

• Answer from chemistry 

• Answer from superconductivity phenomenology

• Answer from microscopic model parameters 

Answer from microscopic models    Answer from microscopic models    

 Hubbard (U-t, U-t-t’ , ...) model, t-J (t-t’ -t” -J,…) model, ...

• U ~ 3 eV, t ~ 0.3 eV and J ~ 0.1 eV are common.

• t’ , t’’ , .. are different.  

• We have to answer the questions of:

– How does crystal structure influence t’ ?

– How does t’ , t’’ influence ∆sand ns ?
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Common Common JJ -- from magnetic susceptibilityfrom magnetic susceptibility

T. Nakano et al. PRB ‘94
M. Oda et al., Physica C ‘97
H.Y. Hwang et al, PRL ‘94

Tχ

Common Common JJ -- from nodal quasifrom nodal quasi--particle velocityparticle velocity

X. J. Zhou et al. 

Velocity V0

T. Yoshida et al. 

Band width along (0,0)-(π,π) ∝ V0 ∝ J
F.C. Zhang et al.: J. Supercond. Sci. Tech. ‘88
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Answer from microscopic models    Answer from microscopic models    

 Hubbard (U-t, U-t-t’ , ...) model, t-J (t-t’ -t” -J,…) model, ...

• U ~ 3 eV, t ~ 0.3 eV and J ~ 0.1 eV are common.

• t’ , t’’ , .. are different.  

• We have to answer the questions of:

– How does crystal structure influence t’ ?

– How does t’ influence ∆sand ns ?

• Fermi surface 

• (π,0)-(π/2, π/2) energy difference in parent insulators

• Magnitude of chemical potential shift

• (π,0) flat band position 
 = magnitude of “large pseudogap”

Indication of different Indication of different tt’’
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Fermi surface shapeFermi surface shape

T.Tohyama and 
S. Maekawa

D. Feng et al., PRL ‘01, D. Lu, PRL ‘01T. Yoshida et al., PRB ‘00.

YBCO
BSCCO

x=0.05

• Fermi surface 

• (π,0)-(π/2, π/2) energy difference in parent insulators

• Magnitude of chemical potential shift

• (π,0) flat band position 
 = magnitude of “large pseudogap”

Indication of different Indication of different tt’’
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T. Takemura et al. J. Phys. Cond. Mat. ‘00
T. Kitajima et al., J. Phys. Cond. Mat. ‘00

LightlyLightly--doped Bi2212 and parent insulatordoped Bi2212 and parent insulator

Hole content, TN from thermopower 

Dispersion along underlying Dispersion along underlying ““Fermi surfaceFermi surface””
in insulatorin insulator

E(π/2,π/2) - E(π,0) ∝ |t’|
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• Fermi surface 

• (π,0)-(π/2, π/2) energy difference in parent insulators

• Magnitude of chemical potential shift

• (π,0) flat band position 
 = magnitude of “large pseudogap”

Indication of different Indication of different tt’’

Magnitude of chemical potential shiftMagnitude of chemical potential shift

T. Tohyama, S. Maekawa, cond-mat/02
A. Ino et al., PRL ‘97
N. Harima et al. cond-mat/02

Experiment Theory
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• Fermi surface 

• (π,0)-(π/2, π/2) energy difference in parent insulators

• Magnitude of chemical potential shift

• (π,0) flat band position 
 = magnitude of “large pseudogap”

Indication of different Indication of different tt’’

T. Yoshida et al., PRB ‘01tight-binding fit

((ππππ, 0) flat band and , 0) flat band and ““large pseudogaplarge pseudogap””

A. Ino et al., PRL ‘98

Angle-integrated photoemission spectra

∆PG

flat band
E(π,0) large 

pseudogap
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((ππππ,0) flat band position ~ ,0) flat band position ~ ““large pseudogaplarge pseudogap””

E(π,0) ∝ |t’|  (C. Kim et al, PRL ‘98)

~ E(π,0)
∼ ∆PG

ARPES @ (π,0)
AIPES

K. Tanaka et al.

TTc,c,maxmax vs vs ““large pseudogaplarge pseudogap””

Tc,max scales with ∆PG ~ E(π,0) and  therefore with |t’|  ?
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Answer from microscopic models    Answer from microscopic models    

 Hubbard (U-t, U-t-t’ , ...) model, t-J (t-t’ -t” -J,…) model, ...

• U ~ 3 eV, t ~ 0.3 eV and J ~ 0.1 eV are common.

• t’ , t’’ , .. are different.  

• We have to answer the questions of:

– How does crystal structure influence t’ ?

– How does t’ influence ∆sand ns ?

R. Raimondi, J.H. Jefferson and 
L.F. Feiner, PRB ‘96

(calculation of Tc based on VHS scenario:
E. Dagotto et al, PRL ‘95)

How does crystal structure influence How does crystal structure influence tt’’ ? ? 

reduction of |t’|

shorter Cu-apical O distance

influence of d3z2-r2, pz orbitals

t’ vs Tc,max
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How does crystal structure influence How does crystal structure influence tt’’ ? ? 

E. Pavarini et al. PRL ’01

t’ vs Tc,max

reduction of |t’|

shorter Cu-apical O distance

pushes up Cu 4s orbitals

Madelung potential difference vs Madelung potential difference vs TTc,c,maxmax

Y. Ohta, T. Tohyama and S. Maekawa, PRB ‘91

destabilize Zhang-Rice singlet

shorter Cu-apical O distance

holes move to apical O

∆VA vs Tc,max

∆VA : Madelung potential difference 
between apical O and planer O

apical O  ← holes  → planar O 
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Answer from microscopic models    Answer from microscopic models    

 Hubbard (U-t, U-t-t’ , ...) model, t-J (t-t’ -t” -J,…) model, ...

• U ~ 3 eV, t ~ 0.3 eV and J ~ 0.1 eV are common.

• t’ , t’’ , .. are different.  

• We have to answer the questions of:

– How does crystal structure influence t’ ?

– How does t’ influence ∆sand ns ?

How does How does tt’’ influence influence ∆∆∆∆SS and and nnSS ? ? 

• ∆s ~ <ω>exp(-1/N(EF)V)

– N(EF) ∝ 1/|t’ | in one-electron picture. 
– However, if N(EF) ~ QP spectral weight at ~ EF ,             

N(EF) and hence Tc may increase with |t’ |.

• nS

– Then it is likely that nS ~ QP spectral weight at ~ 
EF. So nS will increase with |t’ |.

• large |t’ | � stripe formation is suppressed 
 (e.g., M. Fleck et al, PRL ‘98)
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Spectral weight transfer between Spectral weight transfer between 
coherent  and incoherent partscoherent  and incoherent parts

T. Yoshida et al.tight-binding fit

Zhang-Rice singlet
(LHB) UHB

UHBLHB

µ

U

∆

CuO2 plane

D∞∞ Hubbard

coherent

incoherent

coherent

incoherent

H. Kajueter et al. PRB ‘96

Carrier number Carrier number ≈≈≈≈ Spectral weight at ESpectral weight at EFF ? ? 

T. Yoshida et al., cond-mat/02
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?

Superfluid density ρs/m ∝ x

S. Uchida, Y. Tokura, H. Takagi,... ‘89
Y.J. Uemura et al., PRL ‘89

ρs/m

Hall effect: n =1/eRH ∝ x

“Drude weight” in optical conductivity ∝ x

nn ~ ~ xx behavior in underdoped cupratesbehavior in underdoped cuprates

ConclusionConclusion

• Different t’ values rather than J characterize 
different HTCS systems with different Tc,max

– Fermi surface
– (π,0) flat band = large pseudogap
– chemical potential shift
– QP spectral weight


