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RG methods for Quantum Chemistry

Numerical Treatment of SC systems: Where are
we?

e Powerful numerical techniques, but:

— Sensitive models, complicated phasc di-
agrams

— Uncertain models: additional terms can
have a big effect. Making models an art.

Therefore: we need to develop methods that con-
nect more directly to ab initio calculations.

e “LDA + U” models solved by DMFT or other
methods a step in the right direction.

e RG should be the basis for an ideal method.
The approach I've been taking:

1. DMRG for ab initio quantum chemistry on
small molecules

— Work up to strongly correlated systems,
check model calcs.

— Improve quantum chemistry.

2. Numerical canonical transformations of sec-
ond quantized Hamiltonians to create an RG
that can derive models.

Quantum Chemistry—Standard Approach

tered on nuclel.
to form one basis function.
Gaussians.)

Overlap Matrix: O;; =

Several Gaussians are combmed
(Integrals casy with
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Hartree Fock (SCF): Determinantal wavefunction.
Get uncorrelated energy, orthogonal HF orbitals
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Hamiltonian in HF basis:

T
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Correlations: Various methods, usually start with
HF orbitals.
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Configuration Interaction:

1) Form subspace of total Hilbert space, as a
limited set of determinants in HF basis.
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2) Diagonalize exactly within subspace.
3) Justification: perturbation theory.

Multireference Cl:

Do excitations relative to scveral reference states.

Others: Perturbation theory, coupled cluster meth-
ods, etc.

Numerical Simulations—DMRG

Numerical RG’s (Wilson '74): Solve the system a little bit
at a time. Represent system by a set of block Hamiltonian
cigenstates. Only works well for impurity problems.

Density Matrix Renormalization Group (White '92): Rep-
resents system by a set of many-body states, derived from
a density matrix. Includes environment block, and in-
cludes sweeps back and forth through lattice.

Works extremely well for 1D problems (141 D). Accuracy
often increases exponentially with number of states kept
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DMRTG'BS;;S accuracy exponentially fast with width! How-
cver, still feasible up to about L x 8.
Need Hef stater heypt mo lanse
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DMRG for Quantum Chemistry

(HF
Basic Approach: Each jorbital is treated as a
“site” in a lattice. The Hamiltonian is long-
ranged and complicated. Orbitals can be ordered

in order to

a) minimize strength of longer-ranged intcrac-
tions, or

b) in order of Hartree Fock orbital energies.

First Problem: There are N* terms in the Hamil-
tonian, so naively need to keep (N*)N m x m
matrices.

— Sum together all terms ij;czdc;(o,cka,qa
into onc Hyocx matrix once sites 17kl arc all
in the block (always done in DMRG). Now

have only ~ N* matrices, 4 (v 4

Further Improvement: There are ~ N® matrices
per block made out of 3-operator terms. To re-

duce them, construct complementary operators
like

Ogp= ) ViikiCheysCha Clo

jklo’

Now H has terms like
> clyOio.
o

This reduces ~ N*® matrices per block down to
~ N.

Now the dominant part of a block is ~ N? oper-
ators of the form ¢, ¢y, or (:;'-U,(:k,,:, etc. This is

reasonable for storage, but the calculation time is
still (N*m3)N:

H=) ), Vijklelelllexed + - .
ijeL kleR

Solution: Construct more complementary opera-
tors like

o} = Z Vijrilevar)  Vij € L
kKIER

Then there are ~ N? operators in

H= Z [cIcI][q-:z] +...

ijeL O;

Final calculation time: ~ (N2?m®)N
Storage: ~ (N*m?)N (N?m? in core).
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Numerical Canonical Transformations

e
i —— i e

Context: in using DMRG to treat larger systems,
it becomes apparent that DMRG is inefficient: it
treats high energy orbitals the same as levels near
the Fermi level.

Is there a variation of DMRG that treats pertur-
> bative orbitals differently? 1 couldn’t think of a

good one.

——— CI-Singles+Doubles

— —— Exact

¥—FDMRG

25 Basis Functions

HO,r=2r

Is there another RG approach that can remove the
perturbative orbitals before DMRG is used? Yes,
numerical canonical /unitary transformations.

——— MRCI
——— MRCI+Q
100 200 300 400 500

Flow equation method

Invented independently in 1994 by Wegner and
by Glazek and Wilson.

0

. H evolves continuously, becoming more and more

diagonal ®
dH (1
o = [A(e), H()

Cry &) q where the generator A(t) is antihermitian and is
taken to be

-80.35

A(t) = [Ha(t), H ()]
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Jacobi Canonical Diagonalization

Jacobi method: a numerical method for diagonalizing matri-
ces. Rotate away each off-diagonal matrix element with a
2 x 2 transformation matrix, H' = eAHe 4, where

(A) = 0 @\ [ cos@ sind
exp = exp -8 0) \ —sinf cosé

where we choose
1
0= 5 tan_1[2H,-j/(H.-,- — Hjj)]

In Jacobi Canonical Diagonalization, we do a similar pro-
cedure for the second quantized Hamiltonian. An off diagonal
term is anything distinct from its Hermitian conjugate. For
example, to remove

R [P
V= AC;+Cj | CkiCits

and its Hermitian conjugate, we construct the antihermitian
operator
A=0(V-VhH/a

and rotate using
e*He " = H + [A, H) + él—,[A, (A, H]] + ...

where {
6= E tan_l[2a/(E.i — EJ)]

We then repeat for all off diagonal terms we wish to remove,
iterating, since each Jacobi rotation changes previously zeroed
terms.

Jacobi Canonical Diagonalization, continued

How do we implement this numerically?

Straightforward but completely general way: each ¢;, or c:-f,,

stored using one byte, and one term is an array of bytes plus
a floating point coefficient. Write subroutines to take commu-
tators of terms, put in normal ordered form, ... (C++, could
do in Mathematica).

Faster way: put in matrix form, but need to computer-
generate the commutator loops (20,000 lines).

Discarding terms: transformations generate terms involving
all numbers of particles. Simplest truncation rule: discard all
3+ particle terms.

Which off-diagonal terms do we rotate away?  All terms?
Severe problems with near degeneracies. Better choices:

1. Remove all terms which connect to the Hartree Fock
ground state. Example: if
Y = ael.cl
aCiTleCle[T,
remove only if & and | are below Fermi level, and ¢ and
j are above (or vice-versa)

Result: for transformed H, HF ground state is exact
ground state.

2. To “integrate out” an orbital: remove all terms which
change the occupancy of that orbital (k), i.e. which have
acpora cL, but not both.

Result: H commutes with ng,. Then we choose to con-
sider only (nx,) = 0 sector, so discard the orbital and all
terms involving it!
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Jacol, €O E’O; E_gg Method
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<
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&5
¥ Combining canonical transformations and DMRG
o~
\ - -~ Procedure: Apply flow equation method to re-
s = move indicated number of orbitals (farthest
W > from Fermi level). Then apply DMRG on smaller
remaining system (very accurate).
T o |
<2 e
WX System: H-O, with N = 25 basis functions.
Truncation rule: discard all terms involving
more than two particles.

—
Orbitals AFE
Removed
8 -0.0003
13 -0.0003
17 0.016
20 0.014

21 0.012




Page 9

Steven White, UC Irvine (KITP CEM Conf 11-22-02) RG methods for quantum chemistry

"‘SUID)SAS
pojeR110d A[FU0I)S JO S[OPOUW JDALIOP 0} Spoyjouw
uorjeurrojsuer) eowoued Adde :oinjny oy 10y

Ansmuoyd wnjuenb 1o myromod Apre|
-notjred s1 spoyjour 0Mj 91} JO UoljRUIqUIOD Y ],

"SUId)
-8ASs poe[0110d A[8U01)S UI0] S[R}1GI0 JSOUT DAOUIDT
0} PUR ‘S9[NIA[OW PAJR[III00-A[FUOIIS-UOU DA[OS 0)
Posn 9 UL SUOTJRULIOJSURI] [RIIUOURD [RILIDWIT N

"SuoI)
-ounj sIseq ()2 10 ()9 03} pojrwl] oxe om A[judriny)
"S9[MOV[OW [[BWIS JO $9)R)S PUNOIF JO SUOTIRINI[RD
01Ul g djeIndde AIGA 10J posn aq ued HYNU

suosnouo))




