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Umklapp Scattering in Q1D Conductors

Electron dispersion law in a Q1D conductor can be approximated as

eir = +vp(ke F kp) + 2t cos(ky £ ¢).
The Fermi surface consists of two disconnected, warped sheets:
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T he electron-electron umklapp scattering rate is
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T he scattering rate can be written as

1/7(ky,T) = const T2 B(ky),
where B(ky) reflects the phase space available for scattering.
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The function B(ky) = fd %277%2 S[tp F' (ky, ¢; ké”,kg%] has singularities
at certain values of ky, which are determined by the saddle points of
the function F'(kq, k>) and are analogous to the van Hove singularities:

F(k,p; k1, ko) = cos(k + ¢) 4 cos(ky) + cos(ka) + cos(k + k1 — ko — 3p).
The contour plot of F(kq,k>) is shown below:




Calculated variation of 1/ along the Fermi surface

Numbers 1, 2, 3, and 4 correspond to the phases ¢ = n/12, w/4, O,
and w/2; letters a, b, ¢, and d define the temperature T = t;,/240, t,/24,
t,/5, and t,. The normalizing coefficient v is equal to (2m)%t,v%/60g2.



Temperature dependences of 1/7 at different points
on the Fermi surface
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Squares represent the results of numerical calculations, and the solid
lines are curve fits.



Hall effect in Quasi-One-Dimensional Conductors

For weak magnetic fields w.m < 1, according to Ong’s formula [PRB 43,
193 (1991)], the Hall conductivity is proportional to the area enclosed
by the mean-free-path curve

where 1(k;) = 7(k:)v(k:) is the local mean-free path at a given point k;
of the Fermi surface. For a Q1D conductor, this formula gives

De3H dlvz (ky)T(ky)]
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Non-zero contributions to the Hall conductivity have two origins:

e Dependence of vy on ky. This produces conventional temperature-

Ozxy — 1

independent expression for the Hall coefficient Ry = o Ogy — nec

e Dependence of 7 on ky. This term is very sensitive to the presence
of hot spots and produces strong temperature dependence.



Temperature dependence of the contribution to the
Hall coefficient due to hot spots in 1/7
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Comparison between theory and experiment for the
temperature dependence of the Hall coefficient in
(TMTSF)>PFg
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Experimental points are the data from Jérome’'s group [Phys. Rev. Lett.
84, 2674 (2000)], and the solid line is our theoretical curve (a).



Renormalization of umklapp scattering amplitude ~3

and temperature dependence of resistivity pgx
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Temperature dependence of resistivity In
(TMTSF)>PFg4: theory vs. experiment
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Experimental points are Jérome’'s group data [PRL 84, 2674 (2000)],
and the solid line is our theoretical curve with ¢ = %, t =20 K .



AC Hall effect in YBayCugOr~
does not follow a simple Drude model

Experimental points are from
Drew’'s group [Phys. Rev. Lett.
76, 696 (1996)]. Red curve
represents the cold spots model.

orz(w) . cotlpy(w) = ozz(w)/ozy(w)
oey(@) T Rpp(w) = owy(w)/ HoZ, ()

In a simple Drude model:

~2 , T = — —ww.
ory(w) x 74 (w) 7(w) .
cotfy(w) = T-L) = 1 — jw agrees
with experiment.
200 L Ry(w) = const(w,T) does not

50 100

Y 150 200 agree with experiment
® (cm )



Two-m model with cold spots on the Fermi surface of
YBasCu3zO~, at the Brillouin zone diagonals
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Further developments of the cold spots model

Ioffe and Millis, PRB 58, 11631 (1998): 1/7(k:) =~ 1/19 + I‘th, where
1/7m9 T2 is the relaxation rate at the cold spot, and I is temperature-
independent.

van der Marel, PRB 60, R765 (1999): 1/7(k;) = 1/7m0 4+ I sin?(26)

Possible origins of the cold spots

e Geometry of the Fermi surface: the sides of the square vs. the
corners, flat regions vs rounded, 1D vs 2D.

e Fluctuations of a d-wave order parameter (superconducting or insu-
lating): connection to the pseudogap.

e Antiferromagnetic fluctuations at the wave vector (m, ), via merger
of the eight hot spots.



Conclusions

e Strong variations of electronic properties, such as relaxation time,
along the Fermi surface are common in metals and play important
role in electron transport.

e For Q1D conductors, we found hot spots resulting from singular-
ities of the phase space available for scattering. The calculated
temperature dependences of resistivity and the Hall coefficient are
in semiquantitative agreement with the experiment on the organic
conductor (TMTSF)>PFg.

e For cuprates, the phenomenological model of the cold spots at the
Brillouin zone diagonals has certain success in describing dc and ac
transport and magnetotransport.



