STRONGLY CORRELATED SUPERCONDUCTIVITY

- M. Capone University of Rome 'La Sapienza'
- M. Fabrizio and E. Tosatti SISSA Trieste
- C. Castellani University of Rome 'La Sapienza'

CEM02 - KITP Santa Barbara - September 2002

Outline

- Can Strong Correlation "help" Superconductivity?
- Mott Transition to a Zero-Entropy
 Mott Insulator
- Superconductivity close to the MIT
- \bullet Strong Enhancement of Δ due to Repulsion
- Key: Screened Repulsion, Unscreened Attraction
- Relevance for t-J Model

Superconductivity and e-e Correlation

- In Conventional Superconductors →
 Coulomb interaction opposes to SC
- High T_c Superconductors (Cuprates and Fullerene) \rightarrow Strong Electron Correlation $U \gg W$
- The Cuprates are doped Mott Insulators
- Fullerene is considered an Electron-phonon Superconductor (s-wave), but it becomes a Mott Insulator by lattice expansion
- The Proximity to a Mott Transition can Strongly Enhance Superconductivity

The Model

$$H = H_{kin} + \frac{U}{2} \sum_{i} n_i^2 - J \sum_{i} (2S_i^2 + \frac{1}{2}L_i^2)$$

- Three-Orbitals Hubbard Model (L = 1)
- Mott Transition for every $n = 1 \dots 5$
- "Pure" Hubbard model $(J = 0) \rightarrow$ "Usual" Mott Transition in DMFT
- Introducing an Interaction between Orbitals the Story may be Really Different!
- ✓ We take J < 0 (Due to phonons in C_{60})

Lowest Spin and Orbital Momentum

• We study the Mott Transition for $\langle n \rangle = 2$ (Relevant to A₄C₆₀ Compounds)

M. Capone, M. Fabrizio, and E. Tosatti, Phys. Rev. Lett. 86, 5361 (2001).

Weak and Strong Coupling Limits

✓ We vary U/W keeping fixed J/U = -0.02 (Pressure-driven Mott Transition)

Weak Coupling
$$U \ll W$$

- Metal with 1/3 filled bands
- ullet Attraction J + Repulsion UActing on different degrees of freedom
- The attraction would form an s-wave Order Parameter

Who wins?

Scattering Amplitude in Cooper channel

$$A = U + \frac{10}{3}J > 0$$

 $REPULSION \rightarrow | Metal, No Superconductor$

Strong Coupling $U \gg W$

- Strong Correlation → Mott Insulator →
 2 electrons localized on each site
- The Atomic Physics (*J* term) is still effective and splits the multiplets
- The multiplets for two electrons are

$$S = 1, L = 1$$

 $S = 0, L = 2$
 $S = 0, L = 0$

- For J < 0the Mott insulator prefers S = 0 and L = 0
- This State is Non-degenerate

ZERO-ENTROPY MOTT INSULATOR

The Transition is not Direct

- A Continuous Transition from the Metal to the Nondegenerate Insulator is Not Possible
- Problem: the Zero Entropy of the Insulator (or, equivalently, the Spin-Gap)

Two Possibilities:

- 1. First-Order Transition \rightarrow NO!
- 2. Some Other Phase Appears
 - What is the Possible Novel Phase?
 - We use Dynamical Mean-Field Theory (DMFT) to solve this problem
- Bethe Lattice $t_{ij}^{\alpha,\beta} \equiv \delta_{\alpha\beta}$
- ED to solve the Impurity Model at T=0

The DMFT Phase Diagram

- SUPERCONDUCTIVITY appears close to the Mott transition
- $\Delta \equiv S(\omega = 0) \rightarrow \Delta_{SC}$ in BCS
- $\bullet \mid \Delta \sim 1000 \ \Delta(U = 0) \ !!!!!$

How Can Correlation Enhance T_c ?

- For U=0 the maximum Δ is for $W\sim J$
- Correlation reduces the coherent band $W \to W^* = ZW$

SUPERCONDUCTIVITY appears for $ZW \sim 10/3J \sim 0.06W$

Heavy Quasiparticles with Unrenormalized Attraction?

Landau Fermi-Liquid Theory

- The Interacting system can be mapped onto a system of non-interacting Renormalized Quasi-particles
- The Model has SU(2) spin \times O(3) orbital symmetry \rightarrow More parameters which measure the interaction between Quasi-particles:
- $\mathbf{F}_0^S \leftrightarrow \text{charge fluctuations } n$
- $\mathbf{F}_0^A \leftrightarrow \text{spin fluctuations } \sigma$
- $G_0^S \leftrightarrow W^k$ fluctuations in charge channel
- $G_0^A \leftrightarrow W^k$ fluctuations in spin channel
- $H_0^S \leftrightarrow$ orbital fluctuations L
- $H_0^A \leftrightarrow$ spin-orbital fluctuations $L-\sigma$

Response Functions → Landau Parameters

$$\bullet \frac{\chi}{\chi_0} = \frac{m^*}{1 + F_0^A} \to 0$$

$$\bullet \frac{\kappa}{\kappa_0} = \frac{m^*}{1 + F_0^S} \to 0$$

ALL the Susceptibilities VANISH \rightarrow

- No Charge-Spin-Orbital Instability
- Landau F, G, H diverge FASTER THAN m^*

Quasiparticle Interactions

S-wave Superconducting Amplitude

$$A = \frac{\mathbf{Z}}{12\rho} \left(\frac{F_0^S}{1 + F_0^S} - \frac{3F_0^A}{1 + F_0^A} + \frac{2G_0^S}{1 + G_0^S} - \frac{6G_0^A}{1 + G_0^A} \right)$$

 $A < 0 \rightarrow$ Superconducting Instability

$$U \to U_c \text{ all } F \text{ diverge} \to A \to -\frac{Z}{2\rho}$$

 $\overbrace{\text{ATTRACTIVE close to } U_c}$

REPULSIVE at Weak-Coupling!!!

Repulsion gives rise to Superconductivity!

DMFT Results

The True Attraction is Almost Equal to

$$A^{true} \simeq ZU - \frac{10}{3}J$$

M. Capone, M. Fabrizio, C. Castellani and E. Tosatti,
Science 296, 2364 (2002) and cond-mat/0207058

The Scenario

- U Strongly Renormalizes the Quasiparticles \rightarrow Quasiparticle Repulsion is $ZU \ll U$
- ullet The Attraction J is NOT screened Since It Involves Different Degrees of Freedom

$$A = ZU - \frac{10}{3}J$$

Superconductivity appears for $A < 0 \rightarrow Z \simeq 0.06$ (Good Agreement with Z)

Strongly Correlated Superconductivity of Quasi-particles with large $m^* = 1/Z$ and Unrenormalized Attraction $J \sim ZW$

M. Capone, M. Fabrizio, C. Castellani and E. Tosatti, Science 296, 2364 (2002), and cond-mat/0207058

Is This a Generic Mechanism?

- ✓ Analogy with Anderson's RVB idea for the Cuprates
- ✓ In the t J Model

Using the Slave Bosons Approximation $J(S_i \cdot S_j)$ is NOT Renormalized

Non-local J

- ✓ d-wave superconductor
- ✓ DMFT is not enough

What about C_{60} compounds?

- $\bullet W \simeq 0.5 eV$
- $U \simeq 1 1.2 eV$
- $J \simeq 0.02 eV$

$$\checkmark U > U_c(n=2) \rightarrow \text{Non Magnetic Insulator}$$

$$✓ U < U_c(n=3)$$
 → Superconductor

$$K_3(NH_3)C_{60}$$
 (lattice expanded) is an $S = 1/2$ Mott insulator (not $S = 3/2$)

The degeneracy is partially lifted:

RVB background + Spin 1/2 electrons

Is J still unaffected?

Moreover: K_3C_{60} is 'more metallic' \rightarrow

- \bullet Critical values of Z might be larger
- The Superconducting window should be larger

Conclusions

- Mott Transition to the zero-entropy Mott Insulator gives rise to Superconductivity
- Strong Correlation → Strong Enhancement of Superconductivity
- Two Main Ingredients:
 - Unscreened Pairing Attraction J
 - Reduced Coherent Bandwidth $ZW \ll W$
- Superconductivity <u>ONLY</u> involves
 Quasi-particles on a Very Small Energy Range
- Similar to the RVB picture for the cuprates