

Statistics games with ISI

- of every 6 paper mentioning *quantum criticality*, one is in PRL/Nature/Science
- *superconductivity*: one of every **20** papers (*triplet superconductivity*: one of every **7.5**)
- DMFT: one of every 9.7
- *quantum computing*: one of every 8

Part 2: Failures of LDA Near a Quantum Critical Point

Trivial stuff: calculations need to be good, and so does the experiment

- 1997 (Cao *et al*) Sr₃Ru₂O₇ reported to be magnetic (experimentally)
- •1997 (Hase and Hasegawa) Calculations in the *ideal* structure render a nonmagnetic solution.

• 1998 (Ikeda and Maeno) Sr₃Ru₂O₇ reported to be nonmagnetic (experimentally)

• 2001 (Singh and Mazin) Sr₃Ru₂O₇ calculated in the *correct* structure is magnetic with 0.8 μ_B per Ru atom.

• 2001 (Grigera *et al*) Sr₃Ru₂O₇ shown experimentally to be nonmagnetic, but near a metamagnetic QCP. Quantum critical behavior demonstrated in transport properties.

We now know that there are other cases where magnetism exists in the calculations, but not in the experiment:

- LiV₂O₄
- Ni₃Ga, Ni₃In
- \bullet (Sr,Ca)RuO₃(?) \bullet SrRhO₃

- NaCo₂O₄
- hexagonal Fe under high pressure

There are cases where magnetism exists both in the experiment and in the calculations, but is suppressed by fluctuations:

- ZrZn₂
- Sc_3In
- Ni₂Al

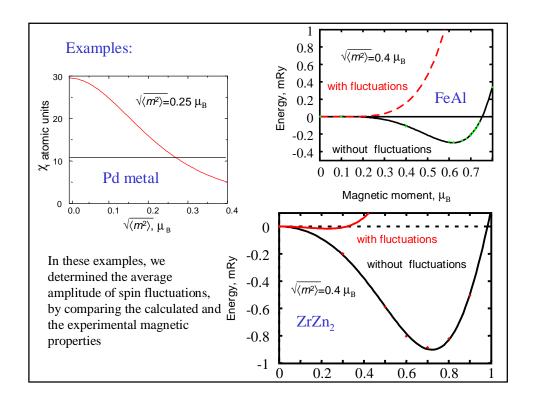
There are cases where magnetism exists neither in the experiment nor in the calculations, but its magnetic susceptibility is suppressed by fluctuations:

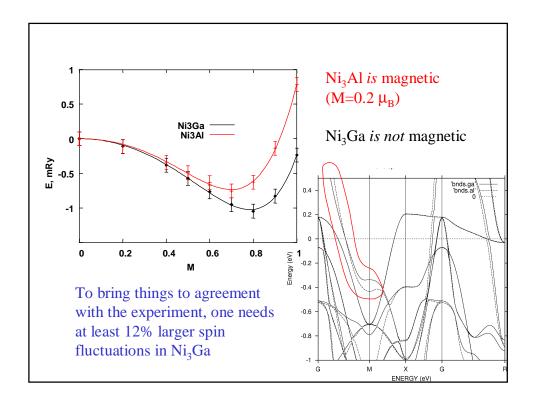
- Pd (exp. QCP in Pd_{0.98}Ni_{0.02})
- \bullet Sr₂RuO₄

Fixed spin moment LSDA calculations $\Delta E(M) = aM^2 + bM^4 + cM^6$ $a^{-1}/2 = \chi$, susceptibility Magnetic moment, μ_R Magnetic moment, μ_B 0.6 0 0.4 -0.2**FeAl** Energy, mRy 0.2 -0.4 0 -0.6 -0.2ZrZn₂ -0.4 -0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 Note that ${\rm ZrZn}_2$ has a much bigger magnetic energy gain

Can such calculations provide any insight at all?

$$\Delta E(M) = aM^2 + bM^4 + cM^6$$
 $a^{-1}/2 = \chi$, susceptibility

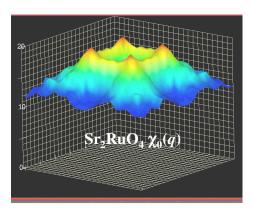

Spin fluctuations renormalize this dependence (Moria, Shimizu, Lonzarich, Yamada....)


 $(\langle m^2 \rangle)$ is the average amplitude of spin fluctuations)

$$a \rightarrow a + \frac{10}{3}b\langle m^2 \rangle + \frac{35}{3}c\langle m^2 \rangle^2 \qquad b \rightarrow b + 7c\langle m^2 \rangle$$

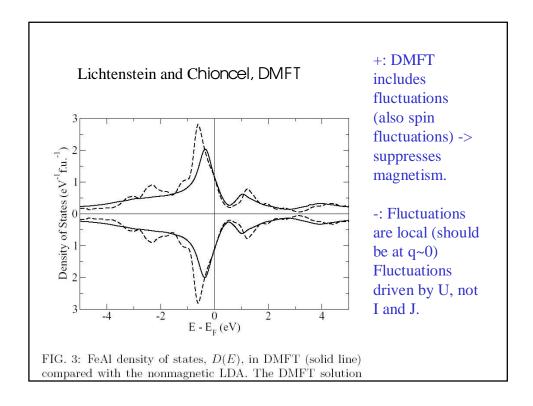
A possible question: what $\langle m^2 \rangle$ do we need to reproduce experiment?

Part 2: Failures of LDA Near a Quantum Critical Point



Superconductivity near QCP

Berk-Schrieffer-Fay-Appel weak coupling theory, 1966-1980


for triplet (p-wave) superconductivity $V(q)=I(q)^2\chi_0(q)/[1-I(q)^2\chi_0^2(q)]$ for singlet (d-wave) superconductivity $V(q)=-I(q)/[1-I(q)^2\chi_0^2(q)]$

where the magnetic coupling I(q) and spin susceptibility $\chi_0(q)$ can be extracted from electronic structure calculations.

Direct (quantitative) approaches to QC:

Dynamical Mean Field Theory? Extended Dynamical Mean Field Theory? FLEX?

Extended DMFT?
$$H = \sum_{ij} U n_{i\uparrow} + \sum_{ij,\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} \quad \dots + \frac{1}{2} \sum_{ij} J_{ij} m_i m_j$$

$$H = \frac{1}{4} \sum_{i} I m_i^2 + \sum_{ij,\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma}$$

+: Fluctuations are q-dependent. Fluctuations are driven by I (Hund) and J - appropriate for weak itinerant magnets like *e.g.* ZrZn₂.

-: q-dependence only in J, while in reality most of q-dependence comes from χ_0 (i.e., t_{ij})

$$\chi(q,\omega) = \frac{\Pi(\omega)}{1 - J(q)\Pi(\omega)} \qquad \chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - I\chi_0(q,\omega)}$$

in any event substantial improvement over DMFT!

Part 2: Failures of LDA Near a Quantum Critical Point

I believe that weakly correlated itinerant magnets are more challenging and more exciting system than strongly correlated localized systems. I urge our DMFT- and other gurus to take a closer look at the matter. And...