Quantum Monte Carlo method for real materials — phase-free random walks in Slater-determinant space

Shiwei Zhang and Henry Krakauer College of William and Mary

OUTLINE

INTRODUCTION TO QUANTUM MONTE CARLO METHODS

SLATER DETERMINANT RANDOM WALKS

- · Formulation as a ground-state method
- Motivation

PHASE/SIGN PROBLEM

APPROXIMATE SOLUTION

APPLICATION TO SILICON

- Calculations on atom, dimer, and bulk (54 atom fcc supercell)
- Binding energy of Si₂ and cohesive energy of bulk in excellent agreement with experiment

SUMMARY AND OUTLOOK

Introduction: Quantum Monte Carlo Methods

Focus on ground-state (T = 0 K)

To project ground state $|\Psi_0\rangle$ of many-body Hamiltonian H,

$$|\Psi^{(n+1)}\rangle = e^{-\tau H} |\Psi^{(n)}\rangle \xrightarrow{n\to\infty} |\Psi_0\rangle$$
 τ : small positive cnst $|\Psi^{(0)}\rangle$: arbitrary

Difference in methods:

different ways of realizing above process stochastically

- Diffusion Monte Carlo (DMC)
- Auxiliary-field methods

Diffusion Monte Carlo (DMC)

Foulkes et al., RMP 73, 33 (2001); talks by Foulkes and Mitas.

Summary:

- Random walks in coordinate space $|R\rangle = |\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N\rangle$ (\mathbf{r}_i : electronic position)
- Has been applied to atoms, molecules, clusters, solids, etc
- A great deal of success promising approach
- Outstanding issues:
 - Fermion sign problem (fixed-node approximation)
 - Efficiency: human (e.g., trial w.f. optimization) and machine
 - Accurate calculations of observables (e.g., forces) and correlation functions
 - Technical problems with non-local pseudo-potentials: locality approximation — overall quality of trial w.f. important (not just position of the node)
- Applications to strongly correlated systems not yet widespread

Auxiliary-field quantum Monte Carlo (AFQMC)

- · More to follow
- Has been applied to correlated electron lattice models, nuclear shell models, etc
- · Impurity solver for DMFT closely related
- Outstanding issues:
 - How to go beyond simple Hubbard (beyond U, V)?
 - Sign problem

• • •

Slater determinant random walks

For any given one-particle basis:

$$H = \underbrace{\sum_{i,j} T_{ij} c_i^{\dagger} c_j}_{\hat{H}_1} + \frac{1}{2} \underbrace{\sum_{i,j,k,l} V_{ijkl} \ c_i^{\dagger} c_j^{\dagger} c_k c_l}_{\text{one-body}} - \underbrace{\sum_{\gamma=1}^{M} \hat{v}_{\gamma}^2}_{}$$

Hubbard-Strotonivich transformation:

$$e^{-\tau H} = \int e^{-\frac{\sigma^2}{2}} B(\sigma) d\sigma$$

σ: auxiliary fields, M-dimensional vector

$$B(\sigma) \equiv \exp(-\tau \hat{H}_1/2) \exp(\sqrt{\tau} \sigma \cdot \hat{v}) \exp(-\tau \hat{H}_1/2)$$
$$\hat{v} \equiv \{\hat{v}_1, \hat{v}_2, \dots, \hat{v}_M\}$$

Random walk in Slater determinant space:

Each walker $|\phi\rangle$ has anti-symmetry properly imposed.

Slater determinant random walks

Illustration of HS transformation — electronic systems:

$$H = K + V_{e-I} + V_{e-e} + V_{I-I}$$

In plane-wave one-particle basis $|k\rangle \equiv \frac{1}{\sqrt{\Omega}}e^{i\mathbf{G}_k\cdot\mathbf{r}}$:

$$V_{e-1} = \sum_{i \neq j} V_{local}(\mathbf{G}_i - \mathbf{G}_j) c_i^{\dagger} c_j + \sum_{i,j} V_{NL}(\mathbf{G}_i, \mathbf{G}_j) c_i^{\dagger} c_j$$

$$V_{e-e} = \frac{1}{2\Omega} \sum_{i,j,\mathbf{Q} \neq 0} \frac{4\pi}{|\mathbf{Q}|^2} c_{\mathbf{G}_i+\mathbf{Q}}^{\dagger} c_{\mathbf{G}_j-\mathbf{Q}}^{\dagger} c_{\mathbf{G}_j} c_{\mathbf{G}_i}$$

$$\rightarrow -\frac{1}{2\Omega} \sum_{\mathbf{Q} \neq 0} \frac{4\pi}{|\mathbf{Q}|^2} \, \rho^{\dagger}(\mathbf{Q}) \underline{\rho(\mathbf{Q})}$$

$$\sum_{i} c_{\mathbf{G}_{i}+\mathbf{Q}}^{\dagger} c_{\mathbf{G}_{i}}$$

$$\rightarrow \sum_{\mathbf{Q}\neq 0} \sqrt{\frac{4\pi}{|\mathbf{Q}|^2}} \Big([\rho^{\dagger}(\mathbf{Q}) + \rho(\mathbf{Q})]^2 - [\rho^{\dagger}(\mathbf{Q}) - \rho(\mathbf{Q})]^2 \Big)$$

Slater determinant random walks

Why?

- We would have a QMC approach that shares exactly the same machinery as in mean-field (Hartree-Fock or DFT) calculations, using any one-particle basis
 - The one-particle problem would be solved exactly, with no statistical error
 - Correlation effects are obtained by building stochastic ensembles of independent-particle solutions
- Opportunities for better approximations to treat sign problem?
- Each walker is a full mean-field wave function. Could this allow more convenient calculations of observables and correlation functions?

Sign/phase problem

Sign problem (if $\hat{\mathbf{v}}$ is real):

• If $(\sum |\phi\rangle)$ gives ground-state, so does $(\sum -|\phi\rangle)$. Random walk leads to a mixture of the two \Rightarrow sign problem.

- Constrained path approximation: impose $\langle \Psi_T | \phi \rangle > 0$ SZ, Carlson, Gubernatis, PRB **55**, 7464 (1997)
- For lattice models, this method has worked well e.g., better energies than from configuration space fixed-node over a fairly wide range of interaction strengths.

Phase problem (if $\hat{\mathbf{v}}$ is complex):

• Except for attractive interactions or special cases (Hubbard), $\hat{\mathbf{v}}$ is complex: $\hat{v}_{\gamma} = i \sum_{ij} v_{ij} c_i^{\dagger} c_j$

 Simple generalization of the constrained path approximation does not work well:

An approximate solution

- (a) "Importance-sampling" transformation
- Seek MC representation of $|\Psi_0\rangle$ in the form: $|\Psi_0\rangle \doteq \sum_{\phi} \frac{|\phi\rangle}{\langle \Psi_T | \phi\rangle}$ i.e., the contribution of each $|\phi\rangle$ is independent of its phase (if $|\psi_T\rangle$ is exact)
- Modify propagator accordingly, for each $|\phi\rangle \stackrel{\sigma}{\longrightarrow} |\phi'(\sigma)\rangle$

ightharpoonup Local energy: $E_L(\phi) \equiv \frac{\langle \Psi_T | H | \phi \rangle}{\langle \Psi_T | \phi \rangle}$

An approximate solution

(b) Projection to break "rotational invariance"

• Even with (a), density of walkers:

Trajectories of 5 walkers (color) during the random walk, shown in the complex plane $\langle \Psi_T | \phi \rangle$.

Contrast with the case when $\hat{\mathbf{v}}$ is real

• Project walker back to real axis in each step according to phase change, e.g., reduce weight by $\cos[Im\{\ln\frac{\langle\Psi_T|\phi'\rangle}{\langle\Psi_T|\phi\rangle}\}]$

An approximate solution

Illustrative results

Jellium, 2 electrons, r_s=10

Comments

- · No upper bound property
- ullet The method reduces to constrained path MC when $\hat{f v}$ is real
- The formalism leads to fixed-node DMC in real space

First application: silicon atom, dimer, and bulk

- Plane-wave basis
- Kleinman-Bylander norm-conserving non-local pseudopotentials
 straightforward to implement
- Same set-up as in a DFT calculation $(G, G' < E_{\text{cut}})$
- Up to 10,000 plane waves (~100,000 auxiliary fields per imaginary-time step)
- Trial w.f. |ψ_T⟩: single Slater determinant from LDA
 TABLE I: Total valence energies of Si and Si₂, and binding energy of Si₂. The Si₂ ground state is ³Σ_g (electronic configuration 5 ↑ 3 ↓). Calculations were done at the experimental equilibrium bond length of 4.244a_B, in a cubic supercell with a = 19a_B (4945 plane waves). Energies are in eV. Error bars are in the last digit and are in parentheses.

0 0	Si	Si ₂	$Si_2 E_B$
LDA	-102.648	-209.175	3.879
QMC	-103.45(2)	-210.03(7)	3.12(8)
Experiment	100		3.21(13)

TABLE II: Cohesive energy of bulk Si. Calculations are done for fcc supercells with 16 and 54 atoms, at $a_{\rm exp}=5.43{\rm \AA}$. QMC result at ∞ is from 54 atoms and includes two finite-size corrections: (i) an independent-particle correction of 0.311 eV from LDA and (ii) an additional Couloumb correction of -0.174 eV from Ref. [20, 22]. A zero-point energy correction of -0.061 eV was also added to the calculated results at ∞ . Energies are in eV per atom. Error bars are in the last digit and are in parentheses.

	16	54	∞
LDA	3.836	4.836	5.086
QMC	3.79(4)	4.51(3)	4.59(3)
Experiment			4.62(8)
DMC + PSP			4 63 (2)

laura at al (1000)

Summary and outlook

- A QMC method to treat extended-interactions with auxiliary fields without the sign/phase problem (approximate)
- The first "ab initio" ground-state calculations using this framework — promising results:
 - Calculations on silicon atom, dimer, and bulk (54 atom fcc supercell, 216 electrons)
 - Accurate binding energy of Si₂ and cohesive energy of bulk, in excellent agreement with experiment
- Potentially a method to systematically go beyond LDA while using much of its existing machinery
- · Lots to do:
 - Applications, including to more strongly correlated systems
 - Algorithm
 - * Implementing calculation of expectation values (underway)
 - * Further improvement? (different choices of one-particle basis, different HS transformations,)
 - * Finite-T generalization? (real $\hat{\mathbf{v}}$: SZ, PRL 83, 2777 (1999))

Preprint: cond-mat/0208340

Supported by NSF, Research Corporation, ONR