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Quantum Monte Carlo method for real materials
— phase-free random walks in
Slater-determinant space

Shiwei Zhang and Henry Krakauer

Introduction: Quantum Monte Carlo Methods
College of William and Mary

Focus on ground-state (I"' = 0K
OUTLINE . ( )

To project ground state |V;) of many-body Hamiltonian H,
INTRODUCTION TO QUANTUM MONTE CARLO METHODS

Pnt+1)y — o—mH |p(n)y _"2F0,
SLATER DETERMINANT RANDOM WALKS | )=e | ) 0/

; . " O\ arh;
e Formulation as a ground-state method 7: small positive cnst  |[Wt): arbitrary

¢ Motivation Difference in methods:

PHASE/SIGN PROBLEM different ways of realizing above process stochastically
APPROXIMATE SOLUTION , e Diffusion Monte Carlo (DMC)
APPLICATION TO SILICON e Auxiliary-field methods

o Calculations on atom, dimer, and bulk (54 atom fcc supercell)

¢ Binding energy of Si» and cohesive energy of bulk in excellent
agreement with experiment

SUMMARY AND OUTLOOK
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Diffusion Monte Carlo (DMC)
Foulkes et al., RMP 73, 33 (2001); talks by Foulkes and Mitas.

Summary:
¢ Random walks in coordinate space |R) = |r1,rg,---,Tn)
(ry: electronic position)
e Has been applied to atoms, molecules, clusters, solids, etc

e A great deal of success — promising approach

e Qutstanding issues:
— Fermion sign problem (fixed-node approximation)
— Efficiency: human (e.g., trial w.f. optimization) and machine
— Accurate calculations of observables (e.g., forces) and
correlation functions g

— Technical problems with non-local pseudo-potentials:
locality approzimation — overall quality of trial w.f.
important (not just position of the node)

e Applications to strongly correlated systems not yet widespread

Auxiliary-field quantum Monte Carlo (AFQMC)

e More to follow

e Has been applied to correlated electron lattice models, nuclear
shell models, etc

e Impurity solver for DMFT closely related

e Qutstanding issues:
— How to go beyond simple Hubbard (beyond U, V)?

— Sign problem
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Slater determinant random walks
For any given one-particle basis:

- PP P | = alal
H =73, Tijeici + 5 X w1 Vigki Cicjcrey

N H, \ fgw‘;, Do

one-body

Hubbard-Strotonivich transformation:
-
e = [e~7 B(o)do
o: auxiliary fields, M/-dimensional vector

B(o) = exp(—1H, /2) exp(y/To - V) exp(=7H, /2)

v = {_(-‘1’ Dg, -+, [-',“.}
Random walk in Slater determinant space:
e—TH
|0 y  [TQ) . o ¥
=2

sample o from e™ T ;

B (0)
gy 22 X 17) 60y = 19)

[Wo) =324 )

Each walker |¢) has anti-symmetry properly imposed.

Slater determinant random walks

Illustration of HS transformation — electronic systems:

H=K+Ve1+Vee+ Vi1

In plane-wave one-particle basis |k) = Vlﬁe‘c"" :

Vear = Z Vlocal(Gl' - G;‘)Cgcj an Z ‘/NLI(G:";1 Gj)cj'cj
i#j i
| 4
Ve = — Z et R0 el _oCG.CG;
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Slater determinant random walks

Why?

* We would have a QMC approach that shares exactly the same
machinery as in mean-field (Hartree-Fock or DFT) calculations,
using any one-particle basis
— The one-particle problem would be solved exactly, with no

statistical error
— Correlation effects are obtained by building stochastic
ensembles of independent-particle solutions

e Opportunities for better approximations to treat sign problem?

e Each walker is a full mean-field wave function. Could this allow
more convenient calculations of observables and correlation
functions?

Sign/phase problem

Sign problem (if v is real):

o If (Y |)) gives ground state, so does (X -19)).
Random walk leads to a mixture of the two = sign problem.

'.‘..-5

‘.
" g { ‘.L{il‘@)

0

e Constrained path approximation: impose (V7 |¢) > 0
SZ, Carlson, Gubernatis, PRB 55, 7464 (1997)

e For lattice models, this method has worked well — e.g., better
energies than from configuration space fixed-node over a fairly
wide range of interaction strengths.

Phase problem (if v is complex):
e Except for attractive interactions or special cases (Hubbard),

v is complex: t
Uy =1 E VijC; €5
ij

e Simple generalization of the constrained path approximation
does not work well:
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Jellium, 2 electrons, r,=10
Nbasis=19, t=0.01, nwlk=5,000
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An approximate solution

(a) “Importance-sampling” transformation
e Seek MC representation of |¥q) in the form:  |[¥o) =3 T'FL?/T@

i.e., the contribution of each |¢) is independent of its phase
(if |¢r) is exact)

e Modify propagator accordingly, for each |¢) —Z |¢'(0))

1
(Tr|o)

f (Ur|¢' (o)) e 7" B(o) do

/]

e—'rfhjz fe—§02 e(a——z&)-\,/?w‘l do 6—1'1:1'1/2 e—'r!::.ld5'

_ (¥r|yTelg)

o Shift: 7 = T

complex!

& Local energy: Fr(¢) = %
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An approximate solution
An approximate solution

(b) Projection to break “rotational invariance”
Illustrative results

e Even with (a), density of walkers:
- S Jellium, 2 electrons, r,=10
Nbasis=19, 1=0.01, nwlk=5,000

0.8 - 1 0 T T T T
1 exact
g ‘ =——=a new method
% === simple constraint
=0
£ Problem!
—0.5 -0.01
Eﬂvr
" 05 0 0.5 1
Re<V |¢>
. -0.02
Trajectories of 5 walkers (color) during the random walk,
shown in the complex plane (Ur|¢).
Contrast with the case when v is real
-0.03 ' . .
0 10 20 . ) 40 50
B =nz

e Project walker back to real axis in each step according to phase
change, e.g., reduce weight by cos[Im{ln %:,Jlﬁ)) H
Comments
e No upper bound property
e The method reduces to constrained path MC when v is real

e The formalism leads to fixed-node DMC in real space
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First application: silicon atom, dimer, and bulk
e Plane-wave basis

e Kleinman-Bylander norm-conserving non-local pseudopotentials
— straightforward to implement

e Same set-up as in a DFT calculation (G, G’ < Eeu)

.

Up to 10,000 plane waves (~100,000 auxiliary fields per
imaginary-time step)

Trial w.f. |¢r): single Slater determinant from LDA

TABLE ©: Total valence energies of Si and Siz, and binding
energy of Si. The Siz ground state is EE; (electronic config-
uration 51 3 }). Calculations were done at the experimental
equilibrium bond length of 4.244ap, in a cubic supercell with
a = 19ap (4945 plane waves). Energies are in eV. Error bars
are in the last digit and are in parentheses.

Si " Sip Si; Es
LDA —102.648 —209.175 3.879
QMC -103.45(2)  —210.03(7) 3.12(8)
Experiment - 3.21(13)

TABLE II: Cohesive energy of bulk Si. Calculations are done
for fcc supercells with 16 and 54 atoms, at Gexp = 5.43A.
QMC result at co is from 54 atoms and includes two finite-size
corrections: (i) an independent-particle correction of 0.311
eV from LDA and (ii) an additional Couloumb correction of
—0.174 eV from Ref. [20, 22]. A zero-point energy correction
of —0.061 eV was also added to the calculated results at co.
Energies are in eV per atom. Error bars are in the last digit
and are in parentheses.

16 54 o]
LDA 3.836 4.836 5.086
QMC 3.79(4) 4.51(3) 4.59(3)
Experiment 4.62(8)
DMC +psp 4143(2)

| avma ab al f1aanan

Summary and outlook

e A QMC method to treat extended-interactions with auxiliary
fields without the sign/phase problem (approximate)

e The first “ab initio” ground-state calculations using this
framework — promising results:

— Calculations on silicon atom, dimer, and bulk (54 atom fcc
supercell, 216 electrons)

— Accurate binding energy of Si; and cohesive energy of bulk,
in excellent agreement with experiment

¢ Potentially a method to systematically go beyond LDA while
using much of its existing machinery

e Lots to do:
— Applications, including to more strongly correlated systems
— Algorithm
* Implementing calculation of expectation values (underway)
* Further improvement? (different choices of one-particle
basis, different HS transformations, ....)
* Finite-T generalization? (real v: SZ, PRL 83, 2777 (1999))
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