- Kavli Institute for Theoretical Physics In University of California, Santa Barbara

Anisotropy of the upper critical field

in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

S. Kittaka, T. Nakamura, Y. Aono, S. Kusaba, S. Yonezawa, K. Ishida, and Y. Maeno

Kyoto University

Sample preparation

Best T_{c} sample!

Sample

Vector magnet system

Vector Magnet with a dilution refrigerator (Kelvinox 24)

- Two superconducting magnets + a rotating stage
- 3D control of the field direction.
- High-precision alignment.

Deguchi et al, Rev. Sci. Instrum., 75, 1188 (2004)

Field sweep

H-T phase diagram determined from the onset in χ '

H II [001] c-axis

WHH formula

$$
\left.H_{\mathrm{c} 2} \sim 0.7 T_{\mathrm{c}} \frac{\mathrm{~d} H_{\mathrm{c} 2}}{\mathrm{~d} T}\right|_{T_{\mathrm{c}}}
$$

H II [100] a-axis

$H_{\text {c2//ab }}$ seems to be suppressed at low T.

Anisotropy ratio $\Gamma\left(=H_{c 2 / / a b} / H_{c 2 / / c}\right)$

Anisotropy ratio is approximately 20 at low temperature

Summary

1. We study $\mathrm{H}_{\mathrm{c} 2}$ anisotropy in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ using a "vector magnet".
2. $H_{\mathrm{c} 2}$ suppression is evident for $H / / a b$.
3. The anisotropy ratio $\Gamma=H_{\mathrm{c} 2 / / \mathrm{ab}} / H_{\mathrm{c} 2 / / \mathrm{c}}$ is approximately 20 at low temperatures.
4. The anisotropy ratio Γ increases toward T_{c}, but appears to remain much below 100 near T_{c}.
