Dec. 17, 2007, KITP-UCSB H_{C2} Limiting and the Superconducting Double Transitions in Sr₂RuO₄

Solving the remaining puzzles

Yoshi Maeno *Kyoto University*

Collaborators on this issue:

Kittaka, Nakamura, Ishida, Aono, Yaguchi, Deguchi, Tanatar

Symmetry of the superconducting state

Experimental identification:

1. Const. inplane spin susceptibility (inplane equal-spin pairing: d//z) There should be no Pauli limiting for in-plane field.

2. Intrinsic magnetism (T-violation) (out-of-plane orbital moment)

$$\vec{d} = \hat{z} \quad (k_x \pm i k_y)$$

$$\frac{1}{\sqrt{2}} [(\uparrow\downarrow) + \downarrow\uparrow)] \qquad L_z = +1, -1$$

$$- \text{ chiral: orbital magnetic moment}$$

$$- \text{ degeneracy: 2}$$

$$Chiral p-wave state$$

Experimental Fact 1: H_{c2} Limiting Behavior for H//ab

WHH curve would predict much larger $H_{c2}//ab$ (Kittaka's presentation)

H// c:

ordinary behavior (conventional orbital limiting only) H / / ab: unusual H_{c2} suppression at low TPauli limiting should be irrelevant for HII ab. (NMR Knight shift shows no change.) $\frac{1}{2} \chi H_p^2 = \frac{1}{8\pi} H_c^2$ $\mu_0 H_p = 1.6 T$

Experimental Fact 2: Emergence of a Second Transition: The "Deguchi Phase"

Facts 1 and 2: H_{c2} Suppression and Double Transitions are Linked

Proposed models for the second phase

State at zero H: $d = \mathbf{z}(k_x + ik_y)$

States under H// x:

Model	Spin	orb. (low <i>H_x</i>)	orb. (high <i>H_x</i>)	boundary	H _{c2} limiting?
Agterberg et al.	Z	<i>k_x</i> + iε <i>k_y</i>	k _x	2 nd -order	No
Udagawa et al.	z - i αγ	<i>k_x</i> + iε <i>k_y</i>	k _x	Crossover (Orb. 2 nd -order transition at lower H)	No
³ He-A1	z-iy	<i>k_z - ik_y</i> // d by dipole int.		2 nd -order	No

Double Transitions: Theoretical Expectation

Orbital Scenario: D. Agterberg, PRL **80**, 5184 (1998); Kaur, Agterberg, and Kusunose, PR B**72**, 144528 (2005). Some extension to simulate the experimental results

Spin + orbital scenario: M. Udagawa *et al.*, JPSJ **74**, 2905 (2005). considers a non-unitary state ($z - i\alpha y$) k_x just below H_{c2} . i.e., $|\uparrow\uparrow\rangle_x$ component.

In both scenarios, k_z is ignored because of Q2D.

The H_{c2} Suppression: Can it be explained by Pauli limiting?

Machida and Ichioka (2007)

Need to use Γ (anisotropy of ξ) = 107 may be estimated from the H_{c2} ratio near T_{c} . Experimentally, $\Gamma(T \rightarrow T_c)$ is not so large. (Kittaka's presentation). A single-band model is not appropriate, either.

Origin of H_{c2} (//ab) Limiting in Sr_2RuO_4

- 1. Pauli Limiting theory is interesting.
 - But it is NOT consistent with thermodynamic and other observations.
- 2. Novel ORBITAL limiting mechanism specific to the chiral triplet pairs seems to be operative for *HI*/ab.

Additional Orbital Depairing Mechanism?

Proposed models for the second phase

State at zero H: $d = \mathbf{z}(k_x + ik_y)$

States under H// x:

Model	Spin	orb. (low <i>H_x</i>)	orb. (high <i>H_x</i>)	boundary	H _{c2} limiting?
Agterberg et al.	Z	k _x + iεk _y	k _x	2 nd -order	No
Udagawa et al.	z - i α <mark>y</mark>	k_x+ iεk_y	k _x	Crossover	No
New	z - i α <mark>y</mark>	k _x + iεk _y {	k _z -ik _y {//x	?	Yes? negligible
³ He-A1	z- i y	k _z - ik _y		2 nd -order	No

Alternative Interpretation

At H=0, $d = x'(k_x + ik_y)$: The spin component pointing in any direction within the *ab* plane.

Yoshioka, Hoshihara, Miyake

d-p model with Upp (O-2p on-site Coulomb) suggests *d* // ab.

