Phase sensitive measurements on the bulk phase of Sr₂RuO₄

Ying Liu The Pennsylvania State University

KITP, UCSB. December 11, 2007

Acknowledgement

Penn State

Karl Nelson, Zhenyi Long, Justin Myers, and Neal Staley

Single crystals are provided by

Y. Maeno (Kyoto University) and Z.Q. Mao (Tulane University)

Low-temperature scanning SQUID measurements

J.R. Kirtley (IBM), K. Hasselbach (CNRS), K. Moler (Stanford)

Work supported by DOE

Phase-sensitive test for odd-parity pairing

V.B. Geshkenbein, A.I. Larkin, A. Barone, Phys. Rev. B 36, 235 (1987).

Expected experimental signatures:

- I_c is a minimum in the interference pattern at zero total flux.
 - Presence of a spontaneous half-flux quantum, $\Phi_0/2$.

Experiment proposed originally for heavy fermions has not been carried out.

Preparation of a Sr₂RuO₄/Au_{0.5}In_{0.5} SQUID

Experimental signature for P-wave pairing:

• *l*_c is a minimum in the interference pattern at zero total flux.

Photo credit: John Passaneau

Consideration on the measurement

The total flux threading the SQUID

$$\Phi = \Phi_{\text{ext}} + \Phi_{\text{ind}} + \Phi_{\text{bgr}} + \Phi_{\text{trap}}$$

To determine if $I_c(\Phi = 0)$ is a minimum, we need $\Phi \to \Phi_{\text{ext}}$.

Goal: To get rid of trapped vortices or vortex-antivortex pairs, and unwanted multiple domains.

- Search for a symmetric $I_c(\Phi)$ pattern.
- Watch out for possible vortex jumps.
- Cool and warm the sample repeatedly with a computer controlled slow rate!

Samples are not created equal!

$I_c(\Phi=0)$ in the quantum interference pattern of an opposite-side $Sr_2RuO_4/Au_{0.5}In_{0.5}$ SQUID

- $T \rightarrow T_c$, Φ_{ind} approaches zero, $\Phi = \Phi_{ext} = HA \Rightarrow I_c (\Phi = 0)$ is a minimum!
 - Reasonable shift due to reduction in I_s , $\Delta \Phi = L\Delta I_s$!

More opposite-side Sr₂RuO₄/Au_{0.5}In_{0.5} SQUIDs

Control experiments: Same-side SQUIDs

 $I_{\rm c}(\Phi=0)$ is a maximum!

More same-side SQUIDs

For both samples, $I_c(\Phi = 0)$ is a maximum!

Sr₂RuO₄/Au_{0.5}In_{0.5} corner junction I

- For d-wave, $I_c(\Phi = 0)$ is minimum.
- For *p*-wave $I_c(\Phi = 0)$ is neither a maximum or minimum!

Conclusion on pairing state in bulk Sr₂RuO₄

The phase of the superconducting order parameter in Sr_2RuO_4 changes by π under inversion, and $\pi/2$ under 90° rotation (shown later), showing that Sr_2RuO_4 is an odd-parity superconductor.

Nelson, Mao, Maeno, and Liu, Science 306, 1151 (2004).

Within Rice-Sigrist scheme of pairing states in two dimensions, this and our other measurements, the above result suggests that the pairing state in Sr_2RuO_4 is that of the Γ_5 .

State	<i>d</i> -vector
Γ_{1}^{-}	x k _x + y k _y
Γ_{2}^{-}	x k _x - y k _y
Γ_3	x k _y - y k _x
Γ_{4}^{-}	$xk_y + yk_x$
Γ_{5}^{-}	$\mathbf{z}(k_{x} \pm i k_{y})$

T.M. Rice and M. Sigrist, J. Phys. Cond. Matt. 7, L643 (1995).