Phase sensitive measurements on the bulk phase of Sr₂RuO₄ # Ying Liu The Pennsylvania State University KITP, UCSB. December 11, 2007 ### Acknowledgement Penn State Karl Nelson, Zhenyi Long, Justin Myers, and Neal Staley Single crystals are provided by Y. Maeno (Kyoto University) and Z.Q. Mao (Tulane University) Low-temperature scanning SQUID measurements J.R. Kirtley (IBM), K. Hasselbach (CNRS), K. Moler (Stanford) Work supported by DOE ### Phase-sensitive test for odd-parity pairing V.B. Geshkenbein, A.I. Larkin, A. Barone, Phys. Rev. B 36, 235 (1987). Expected experimental signatures: - I_c is a minimum in the interference pattern at zero total flux. - Presence of a spontaneous half-flux quantum, $\Phi_0/2$. Experiment proposed originally for heavy fermions has not been carried out. ## Preparation of a Sr₂RuO₄/Au_{0.5}In_{0.5} SQUID Experimental signature for P-wave pairing: • *l*_c is a minimum in the interference pattern at zero total flux. Photo credit: John Passaneau #### Consideration on the measurement The total flux threading the SQUID $$\Phi = \Phi_{\text{ext}} + \Phi_{\text{ind}} + \Phi_{\text{bgr}} + \Phi_{\text{trap}}$$ To determine if $I_c(\Phi = 0)$ is a minimum, we need $\Phi \to \Phi_{\text{ext}}$. Goal: To get rid of trapped vortices or vortex-antivortex pairs, and unwanted multiple domains. - Search for a symmetric $I_c(\Phi)$ pattern. - Watch out for possible vortex jumps. - Cool and warm the sample repeatedly with a computer controlled slow rate! Samples are not created equal! # $I_c(\Phi=0)$ in the quantum interference pattern of an opposite-side $Sr_2RuO_4/Au_{0.5}In_{0.5}$ SQUID - $T \rightarrow T_c$, Φ_{ind} approaches zero, $\Phi = \Phi_{ext} = HA \Rightarrow I_c (\Phi = 0)$ is a minimum! - Reasonable shift due to reduction in I_s , $\Delta \Phi = L\Delta I_s$! # More opposite-side Sr₂RuO₄/Au_{0.5}In_{0.5} SQUIDs ### Control experiments: Same-side SQUIDs $I_{\rm c}(\Phi=0)$ is a maximum! ### More same-side SQUIDs For both samples, $I_c(\Phi = 0)$ is a maximum! ### Sr₂RuO₄/Au_{0.5}In_{0.5} corner junction I - For d-wave, $I_c(\Phi = 0)$ is minimum. - For *p*-wave $I_c(\Phi = 0)$ is neither a maximum or minimum! ## Conclusion on pairing state in bulk Sr₂RuO₄ The phase of the superconducting order parameter in Sr_2RuO_4 changes by π under inversion, and $\pi/2$ under 90° rotation (shown later), showing that Sr_2RuO_4 is an odd-parity superconductor. Nelson, Mao, Maeno, and Liu, Science 306, 1151 (2004). Within Rice-Sigrist scheme of pairing states in two dimensions, this and our other measurements, the above result suggests that the pairing state in Sr_2RuO_4 is that of the Γ_5 . | State | <i>d</i> -vector | |------------------|---| | Γ_{1}^{-} | x k _x + y k _y | | Γ_{2}^{-} | x k _x - y k _y | | Γ_3 | x k _y - y k _x | | Γ_{4}^{-} | $xk_y + yk_x$ | | Γ_{5}^{-} | $\mathbf{z}(k_{x} \pm i k_{y})$ | T.M. Rice and M. Sigrist, J. Phys. Cond. Matt. 7, L643 (1995).