

Workshop Summary: Sr₂RuO₄ and Chiral p-wave Superconductivity

Catherine Kallin, Andy Mackenzie, Yoshi Maeno

KITP December 21, 2007

Time Reversal Symmetry Breaking

Experiment	TRSB?	Domain size [limit >0.3µ]
muSR (Luke & Ishida)	Yes	< 2 µ
Kerr rotation	Yes	> 50 µ with field cooling
(Kapitulnik)		~ > 15-20 μ in ZFC
Scanning Hall Probe	No	< 1 µ
(Moler)		
SQUID (Kirtley)	No	< 2 µ
Tunneling	Yes	< 1 μ ~0.5 μ dynamic
(van Harlingen)		
Tunneling (Liu)	Parity	>10-50 µ
Corner junctions	Yes	

Need to get a handle on domain walls (if they exist!)

Reconciling TRSB expts:

- •Are the surfaces different than bulk on ~ micron scale? (still would have problems with tunneling and Kerr rotation)
- •Non-BCS wave function as described by Leggett? (what about muSR? Kerr rotation?)

muSR is key probe for internal fields:

muSR signal tied to Tc is compelling evidence of internal fields. Need to learn how to extract more detailed information from muSR

- are the fields due to muons, impurities, domain walls, all or none of these? Try to control domain walls through field cooling or other methods to determine this.
- use slow muons or beta-NMR to determine fields as function of depth from surface

Kerr rotation theory?

A personal opinion on the state of play in Sr₂RuO₄

Triplet? Almost certainly

TRSB? Probably

Superconducting domains? Almost certainly

Rotatable d-vector? Less clear

Challenges

Experimental

Control domains

Establish strength of spin-orbit coupling

Precise mapping of phase diagram thermodynamics in superconducting state and its vicinity.

Theoretical

More holistic approach please

Establish strength of spin-orbit coupling

Preparedness to embark on phenomenological modeling as an aid to understanding of experiments

How sure are we that Sr_2RuO_4 is a spin-triplet superconductor?

Strong "direct" pieces of evidence:

- 1. NMR Knight shifts
- Especially for H//ab (Sufficient H_{c2} , large $GL \kappa$, large penetration depth 3 μ m)
- On 101Ru, 99Ru, and 17O (all sites)
- I Simultaneous measurements of $1/T_1$: a sharp drop immediately below T_c
- I Vortex pinning is very weak. (cf. Pinning features only at low H and very near H_{c2})
- Freq. and Hare relatively low (small heating)
- No pressure cell needed (samples directly in liquid He)
- 2. Polarized-neutron "Shull-Wedgewood" experiment (probes S + L)
- 3. Expts indicating Odd Parity (π -junction SQUID, Pb/SRO/Pb proximity effect, etc.)

Controversial facts against spin-triplet scenario:

- 1. Strong H_{c2} suppression for H//ab (for which NMR shows spins are polarizable)
- Pauli limiting due to singlet pairing?
- The double transition "D-phase" may be FFLO?
- \mathbb{I} \mathcal{H}_{c2} anisotropy neat \mathcal{T}_c is about 50 (not sufficiently large to explain the suppression?)
- ۷.
- 3.

How can the "paradox" be resolved?

1. New interpretation of the NMR results? But how?

AND

2. New interpretation of the polarized-neutron experiments

More measurements at lower fields? (currently at 1 T)

```
3. New mechanism for the H<sub>c2</sub> suppression. NEW Theory!
(1) Orbital mechanism?
(Cooper-pair L-instability would give negligible effects.
(2) Competing phase?
(DOS remains the same at high fields. Magnetic phase?)
(3)
```

```
4. Proposals for NEW experiments
(1) Collective modes? By NMR, by Raman
(2) Knight shift by μSR?
(3)
```