Scanning magnetic imaging of Sr₂RuO₄ -or-

Where are the spontaneous fields?

Clifford Hicks, Kathryn Moler

Geballe Laboratory for Advanced Materials, Stanford University, California, USA

sample: Yoshiteru Maeno

Department of Physics and International Innovation Center, Kyoto University, Japan

SQUID: Martin Huber

Department of Physics, University of Colorado Denver

many thanks for additional assistance and discussion with John Kirtley, Hendrik Bluhm, Eun-Ah Kim and Catherine Kallin

funding:

Stanford Synchrotron Radiation Laboratory: U.S. Department of Energy DE-AC02-76SF00515

Our tools:

The scanner:

3μm SQUID, polished:

Scanning procedure:

- 1) Locate the surface. That is, detect "touchdown"
- 2) Touchdown at a several more points within the range of the scanner
- 3) Perform a first- or second-order fit to these points
- 4) During scanning, the probe is kept a controlled height above this surface fit.

Typical "lift heights" are 200-1000nm.

sensor alignment with the sample:

Pickup loop has area ~10um², so a flux of $1\Phi_0$ corresponds to a field of ~2G.

Strontium ruthenate in the ambient field (Earth's field):

each square is 136 μ m on a side; color scale is 2.2 Φ_0 full-scale.

Now with fewer vortices:

All three of these images are the same data! Different color scales.

lift height: 0.1V (~200nm) no applied field images are approx 140µm on a side.

Note the surface features. These are likely to be artifacts of the surface roughness, not magnetic features.

The same area with almost no vortices.

Applied field, cooling and scanning: 21mG (to cancel ambient field). lift height = 0.2V (~400nm) images are approx 140µm on a side.

left: raw data; right: expanded color scale

There are three terraces here, visible in optical images of the sample. Their combined height is ~700nm

Anticipated field at the sample edge, within the sample: (Matsumoto & Sigrist)

Extend to z>0, using lambda=150nm:

$$\tilde{B}_z(k,z) = \frac{K}{k+K} \tilde{B}_z(k,z=0) e^{-kz}$$
 $K = \sqrt{k^2 + (1/\lambda)^2}$

$$K = \sqrt{k^2 + (1/\lambda)^2}$$

Now move to the sample edge:

applied field: 22mG (to cancel ambient B_z) lift height = 0.2V (~400nm)

same data, with expanded color scale and 2nd-order fits subtracted separately from left and right portions:

Separating any chiral edge magnetization from focusing of ambient field is likely to be difficult.

Now move back away from the edge.

applied field: 22mG

lift height = 0.3V (~600nm)

Two successive scans, without thermal cycling between.

Why are we not seeing any edge magnetization? Some ideas

(1) Very large healing length?

The edge current is generated over a length $larger\ than\ \xi$:

But a factor of >100 reduction seems difficult to obtain this way.

(2) The angular momentum per Cooper pair is less than *hbar?*

The gap on the γ -sheet is known to have deep nodes, whereas model calculations assume a cylindrically symmetric $\psi \sim \exp(i\varphi)$ perhaps it is something like $\psi \sim \exp(i\phi) + \alpha \exp(-3i\phi)$?

But again, a factor of >100?

(3) Very small ab domains?

However Kerr effect measurements suggest an *ab* domain size of ~50um.

van Harlingen group's phasesensitive edge measurements suggest ~1um domains.

Y Liu group's experiments: phase maintained across entire crystal? single domain?

Domain structure may be locked in at $T \sim T_c$, where ξ and λ are larger.

(4) Fine structure along the *c*-axis?

$$\xi_c$$
=1.2nm

Again, can this be squared with Liu and van Harlingen group experiments?

(5) The pairing potential is only significant near E_F ; does this have any effect?

If only electrons within $\omega_{\rm c}$ of $E_{\rm F}$ contribute to the edge current then this is a

reduction by ~30.

At right: solution of the BCS equation

$$\Delta_k = -\sum_l V_{kl} \frac{\Delta_l}{2(\xi_l^2 + \Delta_l^2)^{1/2}}$$

with the condition

$$V_{kl} = V, |\xi_l - \xi_k| < \omega_C$$

instead of the usual

$$V_{kl} = V, |\xi_l| < \omega_C, |\xi_k| < \omega_C$$

Particles seeing a very weak pairing potential might recover from impurity scattering only very slowly.

(6) Parasitic effects from the other bands?

The main SC band is the γ -band, but there are also the α and β bands. The gap is very large: $\Delta(T=0) = (4-6)k_BT_C$

(7) Sr_2RuO_4 is not a p+ip superconductor.

What about the muon spin rotation data?

muon gyromagnetic ratio: .085 μ sec⁻¹G⁻¹; *ie* a 74 μ sec oscillation period at 1G. So if after 2μ sec the muons have depolarized noticeably more than in the normal state, fields of up to ~5G occupy a significant volume fraction of Sr_2RuO_4 .

MuSR data on Sr₂RuO₄ suggest that ~10% of muons are seeing fields of ~5G. Where is this field?

(PrOs₄Sb₁₂: a similar situation, where muons see a ~10G field, but scanning magnetic imaging shows no such large fields.)

Empirically: these fields must have small length scales or/and short (but >~1usec) timescales.

Might this magnetization have a different origin than chiral domains?

Scanning 0.5µm Hall probe images of ErNi₂B₂C:

