

GRAVITATIONAL WAVE ASTRONOMY WITH COMPACT BINARIES: LOCALISATION AND LATENCY

Stephen Fairhurst Royal Society University Research Fellow Cardiff University

LIGO-G1200760

Refs: arXiv:0908.2356; 1010.6192; 1205.6611

350 years of

excellence in science

And new results, in collaboration with D. Brown and P. Sutton

BINARY COALESCENCE WAVEFORMS

Post-Newtonian Inspiral

Numerical Merger

2009-10 Sensitivity (S6-VSR2/3) Directional Sensitivity

DETECTOR SENSITIVITY

BNS Horizon

Horizon vs Mass

Horizon = 2.26 x Average Range

Abadie et al arXiv:1203.2674

DETECTOR SENSITIVITY

COALESCENCE RATES

- Latest rate exclusions from LIGO-Virgo data Abadie et al PRD (2012)
- Astrophysical predictions See, e.g. Abadie et al CQG (2010)
- A range of about 100 Mpc likely to provide events

ADVANCED DETECTORS

Advanced LIGO design LIGO-M060056-v2

Advanced Virgo design VIR-0128A-12

SENSITIVITY EVOLUTION

- Advanced detectors: first lock in 2014
- Will take several years to achieve design sensitivity
- Commissioning & Observing roadmap in preparation
- For now, take lessons from initial detectors ...

LIGO: first lock 2000

SENSITIVITY EVOLUTION

- Advanced detectors: first lock in 2014
- Will take several years to achieve design sensitivity
- Commissioning & Observing roadmap in preparation
- For now, take lessons from initial detectors ...

LOCALISATION

LOCALISATION FROM TIMING

 A pair of detectors localises to a ring on the sky

LOCALISATION FROM TIMING

 A pair of detectors localises to a ring on the sky

• Width of rings given by

$$\sin\theta \, d\theta = \frac{\sqrt{\sigma_1^2 + \sigma_2^2}}{\Delta t}$$

• where
$$\sigma_t = \frac{1}{2\pi\rho\sigma_f}$$

 Δt detector baseline

SNR AND BANDWIDTH

Ajith et al arXiv:1201.5319

• Timing accuracy: Early aLIGO ASD - Zero Det. High Power ASD $242 M_{\odot}, \rho = 26$ 10^{-21} $2 |\tilde{s}(f)| \sqrt{f}$ $\sigma_t = \frac{1}{2\pi\rho\sigma_f}$ $-61 M_{\odot}, \rho = 18.2$ $-24M_{\odot}, \rho = 8.6$ $p_{\rm ug} = 10^{-22}$ • SNR: $\overset{(f)_{u}}{\searrow}_{10^{-23}}$ $\rho^2 = 4 \int_0^\infty \frac{|h(f)|^2}{S(f)} df,$ • Bandwidth: 10^{2} 10^{3} 10^{1} Frequency f (Hz) $\sigma_f^2 = \left(\frac{4}{\rho^2} \int_0^\infty f^2 \frac{|h(f)|^2}{S(f)} df\right) - \left(\frac{4}{\rho^2} \int_0^\infty f \frac{|h(f)|^2}{S(f)} df\right)^2,$

FREQUENCY BANDWIDTH

- 100 Hz as a rule of thumb
- Does depend upon high frequency sensitivity
 - No SRM: 60 Hz
 - Zero Det, High P: I 20 Hz
- Significant impact on localisation

NOISE BACKGROUND

- Noise background falls off rapidly at high SNR, due to sophisticated analysis pipeline Babak et al, arXiv:1208
 - Matched filtering analysis
 - Signal consistency tests
 - Data quality cuts
- For following examples:
 - Require combined SNR > 12 for detection
 - SNR > 5 in two detectors
 - SNR > 3 to contribute to localisation

Abadie et al PRD (2012)

LOCALISATION FROM TIMING

$$\sin\theta \,d\theta = \frac{\sqrt{\sigma_1^2 + \sigma_2^2}}{\Delta t} \sim \frac{10^{-4}s}{10^{-2}s}$$

CAVEATS

- Results use only timing information, but assuming can break reflection degeneracy for 3 sites [Veitch talk]
- Use Gaussian approximation to localisation (breaks down at low SNR)
- Have neglected effects of discrete "template bank"
- Have neglected spin (precession) effects [Harry, Raymond talks]

LIGO-VIRGO AT DESIGN

- LIGO 200 Mpc
- Virgo 120 Mpc
- Assume 80% duty cycles
- 0.2 200 BNS signals per year

Face on BNS @ 160 MPc

LIGO-VIRGO AT DESIGN

- LIGO 200 Mpc
- Virgo 120 Mpc
- Assume 80% duty cycles
- 0.2 200 BNS signals per year

Face on BNS @ 160 MPc

LIGO-VIRGO AT DESIGN

- LIGO 200 Mpc
- Virgo 120 Mpc
- Assume 80% duty cycles
- 0.2 200 BNS signals per year

Face on BNS @ 160 MPc

NO SIGNAL RECYCLING

- LIGO 160 Mpc
- Virgo 100 Mpc
- Assume 80% duty cycles
- 0.1 100 BNS signals per year

Face on BNS @ 160 MPc

LIGO (half commissioned) -VIRGO

- LIGO 200 Mpc 100 Mpc
- Virgo 120 Mpc
- Assume 80% duty cycles
- 0.05 50 BNS signals per year

Face on BNS @ 160 MPc

LIGO-VIRGO (half commissioned)

- LIGO 200 Mpc
- Virgo 120 Mpc 60 Mpc
- Assume 80% duty cycles
- 0.2 200 BNS signals per year

Face on BNS @ 160 MPc

LOCALISATION OF SOURCES

WITH LIGO INDIA

- LIGO (inc India) 200 Mpc
- Virgo 120 Mpc
- Assume 80% duty cycle
- 0.4 -400 BNS signals per year

WITH KAGRA

- LIGO 200 Mpc
- Virgo 120 Mpc
- KAGRA 160 Mpc
- Assume 80% duty cycle
- 0.3-300 BNS signals per year

5 SITES

- LIGO (inc India) 200 Mpc
- Virgo 120 Mpc
- KAGRA 160 Mpc
- Assume 80% duty cycle
- 0.5-500 BNS signals per year

LOCALISATION OF SOURCES

WAVEFORMS AND CALIBRATION

Phase error introduces a timing systematic

$$|\delta t| \le \frac{1}{\sigma_f} \left[\frac{\delta \phi_{\max}}{2\pi} \right]$$

- True for all PSDs; for realistic ones, typically factor of 2 better
- Compare to statistical error

 $\sigma_t = \frac{1}{2\pi\rho\sigma_f}$

 5° systematic subdominant below SNR of 20

Contribution to phase error (multiply by $\delta \phi$ and integrate)

EFFECT ON LOCALISATION

LATENCY

LOCALISATION BEFORE MERGER?

- In advanced detectors, BNS signals spend minutes in band
- Might detect a loud signal a minute ahead.
- But localisation comes in the last second.

S6-VSR3 LOW LATENCY

- Low latency search was done in S6-VSR2/3
- Used timing and amplitude information for rapid localisation
- Areas comparable to theoretical predictions

Abadie et al, A&A 2012

S6-VSR3 LOW LATENCY

- Latencies of minutes for the analysis were achieved
- There was then a human check of instrumental performance

Abadie et al, A&A 2012

WANCED DETECTOR LATENCY

much harder

r templates

iny templates

- Significant effort to achieve minutes latency
- Achieved in recent "engineering runs" using simulated data at advanced detector design

Keppel for the LSC and Virgo, GWPAW 2012 poster

ALTERNATIVE LOCALISATION ROUTE

SUMMARY

- Advanced detectors will approach their design sensitivities toward the end of the decade
- Localisation areas of 10s of deg² with three sites
- Additional sites in India and Japan give significant improvement
- Latency of minutes is possible
- Rapid follow up of observed GRBs could give localised GW sources.