Black Hole-Neutron Star Binaries at Realistic Mass Ratios

Francois Foucart (CITA)

SXS Collaboration

Collaborators

- CITA: Harald Pfeiffer, Abdul Mroue, Serguei
 Ossokine, Ilana MacDonald
- WSU: Matt Duez, Brett Deaton
- Cornell: Saul Teukolsky, Larry Kidder, Geoffrey Lovelace, Mike Boyle, Curran Muhlberger, Dan Hemberger
- Caltech: Christian Ott, Mark Scheel, Bela Szilagyi, Roland Haas, Jeff Kaplan, Nick Taylor, Christian Reisswig

BHNS Parameter Space

Important binary parameters <u>at merger</u>:

$$q = \frac{M_{\rm BH}}{M_{\rm NS}}, \chi_{\rm BH} = \frac{a_{\rm BH}}{M_{\rm BH}}, C_{\rm NS} = \frac{M_{\rm NS}}{R_{\rm NS}}$$

BHNS

For Post-Merger :
Microphysics
MHD
Ejecta

To also explore :
Large Spins
Precessing binaries

Numerical Simulations

- Study q=7 for polytropic equations of state (Γ =2)
- Vary :
 - BH spin amplitude (χ_{BH} = 0.5 0.9)
 - BH spin inclination (up to 60°) for $\chi_{\rm BH}$ = 0.9
 - Neutron star radius (R_{NS} = 12 14 km) for χ_{BH} = 0.9
- Objectives:
 - Describe post-merger remnant : Disk mass, Tidal Tail, ... (Unbound mass only approximately determined)
 - Study gravitational waves

Black Hole Spin

a_{BH}/M_{BH}>0.7 required to form a disk! Left: a_{BH}/M_{BH}=0.9 ⇒ M_{remnant}≈0.30M_{NS} (~1/2 in tail) Right: a_{BH}/M_{BH}=0.7 ⇒ M_{remnant}≈0.05M_{NS} (~1/2 in tail)

F. Foucart et al. (2012), Phys Rev D85 044015

Precessing Binaries

Disk formation up to 400 misalignment Left: 400 misalignment ⇒ Mremnant≈0.15MNS (>1/2 in tail) Right: 600 misalignment ⇒ Mtail<0.05MNS (no disk after 5ms) => Important for disk mass only if large inclinations are common Other effects : see Nick Stone's talk

Equation of State

- Left: Smaller star (R=12.2km) disrupts very late
- Right: Rapid decay of the remnant mass with R_{NS}

Remnant Mass

- $M_{\text{remnant}} = M_{\text{disk}} + M_{\text{tail}} + M_{\text{ejecta}}$
- Assume remnant mass depends on:
 - Tidal disruption radius
 - Innermost stable circular orbit

 $M_{\rm remnant} = \alpha \left(\frac{M_{\rm BH}}{M_{\rm NG}}\right)^{1/3} \left(1 - 2\frac{M_{\rm NS}}{R_{\rm NG}}\right) - \beta \frac{R_{\rm ISCO}}{R_{\rm NG}}$

- Fit to numerical simulations [Kyutoku et al.(2012), Etienne et al. (2010), Foucart et al.(2011 & 2012)] : α =0.29, β =0.15
- $\Delta Mremnant \sim 0.02 M_{NS}$ for $M_{remnant} < 0.2 M_{NS}$, no precession

Remnant Mass

F. Foucart (2012), arXiv:1207.6304

Remnant Mass

F. Foucart (2012), arXiv:1207.6304

Gravitational Waves

- I5-20 cycles waveforms for all simulations
- Numerical error : $\delta \phi \sim 0.2 rad$ (inspiral)
- Extrapolation error : $\delta \phi < 0.1 rad$ (inspiral)

GW: Spin Effects

Orbital hangup main observable spin effect

 Small differences in cutoff frequency due to disruption farther/closer to BH

GWs: EoS Effects

Waveforms indistinguishable up to merger

• Cutoff frequency shifts: $f_{cut} = I kHz \rightarrow 2kHz$

Conclusion

- Disk formation only possible for large NS and/or quasi-extremal spins
- Equation of State effects on waveforms:
 - Small during inspiral
 - Large difference in f_{cutoff} (...if NS disrupt!)
- Mass predictions available in most of the astrophysical range of parameters

References:

F. Foucart et al. (2012), Phys Rev D85 044015 F. Foucart (2012), arXiv:1207.6304