Searching for binaries with spin with Advanced LIGO and Advanced Virgo

Ian Harry
Syracuse University

Motivation

- We have a well established method for searching for systems that do not have spin.
 - Matched filtering with non-spinning waveforms
 - Good for binary neutron stars
- Also has some sensitivity to spinning systems
 - NSBH, BBH
- •We don't want to miss binaries where spin matters!
 - Need to quantify the effects of spin and improve search

Motivation

Talk Overview

- What changes when the components of the binary have spin?
- Why is it a challenge to search for objects with spin?
- Searching for aligned-spin waveforms?
- Searching for precessing waveforms?
- What about other effects?
 - Sub-dominant modes, matter effects, eccentricity

What changes with spin?

- The coupling between the spinning bodies and the orbital angular momentum cause:
 - Changes in the frequency evolution of the system (and thus frequency of emitted GWs)
 - Changes in the energy lost to GWs (and thus amplitude of emitted GWs)
 - Precession

Frequency evolution

Spin affects the frequency evolution of a CBC

No spin: -

$$\frac{\dot{\omega}}{\omega^2} = \frac{96}{5} \left(\mathcal{M}\omega \right)^{5/3} \left\{ 1 + A(\mathcal{M}, \eta) \left(\mathcal{M}\omega \right)^{2/3} + B(\mathcal{M}, \eta) \left(\mathcal{M}\omega \right)^{3/3} + \left(C(\mathcal{M}, \eta) \right) \left(\mathcal{M}\omega \right)^{4/3} + \left(D(\mathcal{M}, \eta) \right) \left(\mathcal{M}\omega \right)^{5/3} + \dots \right\}$$

Chirp mass:
$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Symmetric mass ratio:
$$\eta = \frac{(m_1 m_2)}{(m_1 + m_2)^2}$$

Frequency evolution

Spin affects the frequency evolution of a CBC

With spin:

$$\frac{\dot{\omega}}{\omega^2} = \frac{96}{5} \left(\mathcal{M}\omega \right)^{5/3} \left\{ 1 + A(\mathcal{M}, \eta) \left(\mathcal{M}\omega \right)^{2/3} + B(\mathcal{M}, \eta) \left(\mathcal{M}\omega \right)^{3/3} + \left(C(\mathcal{M}, \eta) + SO \right) \left(\mathcal{M}\omega \right)^{4/3} + \left(D(\mathcal{M}, \eta) + SS \right) \left(\mathcal{M}\omega \right)^{5/3} + \dots \right\}$$

Chirp mass:
$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Symmetric mass ratio:
$$\eta = \frac{(m_1 m_2)}{(m_1 + m_2)^2}$$

What changes with spin?

- The coupling between the spinning bodies and the orbital angular momentum cause:
 - Changes in the frequency evolution of the system (and thus frequency of emitted GWs)
 - Changes in the energy lost to GWs (and thus amplitude of emitted GWs)
 - Precession

What changes with spin?

- The interactions of the spinning bodies with the orbital angular momentum, each other and themselves cause:
 - Changes in the frequency evolution of the system (and thus frequency of emitted GWs)
 - Changes in the energy lost to GWs (and thus amplitude of emitted GWs)
 - Precession

Simple Precession

- Most precessing binaries undergo "simple precession"
 - L and S_{1.2} precess around J
 - L: orbital angular momentum'
 - S_i: Spin (component's angular momentum)
 - J: Total angular momentum

Figure from Schmidt, Hannam and Husa. arXiv:1207.3088

Transitional Precession

- When J becomes very small "transitional precession" can occur
- S and L "tumble" during the transition
- Simple precession resumes once J becomes larger
- Very rarely occurs

Figure from Schmidt, Hannam and Husa. arXiv:1207.3088

Phase changes

$$m_1 = m_2 = 3M_{\odot}$$

For spin:

$$\chi_1 = \chi_2 = 1$$

$$\chi_{1,2} = \mathbf{S}_{1,2}/m_{1,2}^2$$

$$S_1 \cdot L = S_2 \cdot L = 1$$

At t=0, frequency of GWs for both traces is 40Hz

Precession

$$m_1 = 1.4 M_{\odot}, m_2 = 10 M_{\odot}$$

For aligned spin:

$$\chi_1 = \chi_2 = 1$$

$$\chi_{1,2} = \mathbf{S}_{1,2}/m_{1,2}^2$$

$$S_1 \cdot L = S_2 \cdot L = 1$$

For precessing:

$$\chi_1 = \chi_2 = 1$$

$$S_1 \cdot L = S_2 \cdot L = 0$$

$$S_1 \cdot S_2 = 0$$

At t=0, frequency of GWs for all traces is 40Hz

Spin effects

- Spin will also affect the merger, ringdown etc.
- See talks by:
 - Yi Pan (Analytical modeling of spinning systems)
 - Geoffrey Lovelace (Numerical modeling of spin systems)

How do we search for nonspinning systems?

How does this non-spinning search do with spinning signals?

Matched-filtering

$$(s|h) = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{s}(f)\tilde{h}^*(f))}{S_h(f)}$$

Matched-filtering

Restricting to dominant mode:

$$\bar{h}(f) = \bar{A}(D,\iota,\theta,\psi,\phi) \mathcal{M}^{5/6} f^{-7/6} \exp\left[i\left(\Phi(\mathcal{M},\eta,f) + \bar{\Phi}_0(\iota,\varphi,\theta,\psi,\phi)\right)\right]$$
 Orientation and location parameters

 Orientation and location parameters enter only as amplitude or phase shifts

Non-spin search

Non-spin search

Non-spin search

Maximised SNR

$$(s|h) = 4 \operatorname{Re} \left(\int_{0}^{\infty} \frac{\bar{s}(f))\bar{h}^{\star}(f)}{S_{h}(f)} df \right)$$

Maximised SNR

$$(s|h) = 4 \operatorname{Re} \left(\int_{0}^{\infty} \frac{\bar{s}(f))\bar{h}^{\star}(f)}{S_{h}(f)} df \right)$$

Maximise over orientation, and location parameters

$$(s|h)_{\text{maximised}} = 4 \left| \int_{0}^{\infty} \frac{\tilde{s}(f))\tilde{h}^{\star}(f)}{S_{h}(f)} df \right|$$

Maximised SNR

$$(s|h) = 4 \operatorname{Re} \left(\int_{0}^{\infty} \frac{\bar{s}(f))\bar{h}^{\star}(f)}{S_{h}(f)} df \right)$$

Maximise over orientation, and location parameters

$$(s|h)_{\text{maximised}} = 4 \left| \int_{0}^{\infty} \frac{\tilde{s}(f))\tilde{h}^{\star}(f)}{S_{h}(f)} df \right|$$

As a function of the coalescence time

$$(s|h)_{\text{maximised}}(t_c) = 4 \left| \int_0^\infty \frac{\bar{s}(f)\bar{h}^{\star}(f)}{S_h(f)} e^{-2\pi i f t_c} df \right|$$

Masses

 No trick to deal with the mass range – use a bank of filters

Masses

No trick to deal with the mass range – use a bank of

filters

Mitigating non-Gaussianity

- Non-Gaussian background will cause loud SNR events
- The effect of this is mitigated by:
 - Coincidence test
 - Removing times of poor data quality
 - A set of signal based vetoes, such as chi-squared tests

Data Analysis – A movie

10 15

20 25 30 35

tau0

5

Bank

templates

-0.5 s

932292850.000

+0.5 s

movie

Is a spinning search needed?

- How well would we do if we used the non-spinning search to search for generic systems?
 - Some SNR would be lost, but how much?
- •We can measure this:
 - Create generic waveforms
 - Search for them using the non-spinning bank
 - Determine largest SNR
 - Compare to SNR obtained using exact waveform
 - Known as Fitting Factor

BNS signal distribution

- Uniform in component masses:
 - Both NSs between 1 and 3 solar masses
- Uniform in component spin magnitudes:
 - Both NSs spin from 0 0.05 or 0 0.4
- Isotropic in all orientation/location angles
- Analytical inspiral only waveforms ("TaylorT4")
- Use aLIGO zero-detuned, high-power sensitivity curve

BNS non-spinning search

Plot from Brown, IH, Lundgren and Nitz (arXiv:1207.6406)

NSBH signal distribution

- Uniform in component masses:
 - NSs between 1 and 3 solar masses
 - BHs between 3 and 25 solar masses
- Uniform in component spin magnitudes:
 - NS spin from 0 0.4
 - BH spin from 0 1
- Isotropic in all orientation/location angles
- Analytical inspiral only waveforms ("TaylorT4")
- Use aLIGO zero-detuned, high-power sensitivity curve

NSBH non-spinning search

Plot from Brown, IH, Lundgren and Nitz (In preparation)

BBH signal distribution

- Uniform in component masses:
 - Both BHs between 3 and 25 solar masses
- Uniform in component spin magnitudes:
 - Both BHs spin from 0 1
- Isotropic in all orientation/location angles
- Analytical inspiral only waveforms ("TaylorT4")
- Use aLIGO zero-detuned, high-power sensitivity curve

BBH non-spinning search

Plot from Brown, IH, Lundgren and Nitz (In preparation)

Summary and caveats

- Employing the non-spinning search in the advanced detector era will result in regions of parameter space where spin will reduce our detection ability
- Results are only as good as the waveforms we have
 - To evaluate BBH performance we really need precessing waveforms with merger and ringdown
 - We did not include any mismatch between the template waveforms and the "signals"
- Results depend on the chosen distribution of signals
 - Restricting the parameter space will help us

How can we search with alignedspinning waveforms?

How does an aligned-spinning search do with generic signals?

Aligned spin

Maximised SNR

$$(s|h) = 4 \operatorname{Re} \left(\int_{0}^{\infty} \frac{\bar{s}(f))\bar{h}^{\star}(f)}{S_{h}(f)} df \right)$$

Maximise over orientation, and location parameters

$$(s|h)_{\text{maximised}} = 4 \left| \int_{0}^{\infty} \frac{\tilde{s}(f))\tilde{h}^{\star}(f)}{S_{h}(f)} df \right|$$

As a function of the coalescence time

$$(s|h)_{\text{maximised}}(t_c) = 4 \left| \int_0^\infty \frac{\bar{s}(f)\bar{h}^*(f)}{S_h(f)} e^{-2\pi i f t_c} df \right|$$

Now have 4 intrinsic parameters (masses and spins)

- Now have 4 intrinsic parameters (masses and spins)
 - Bank of waveforms must be 4 dimensional
 - Geometric placement
 - Brown, IH, Lundgren and Nitz (arXiv:1207.6406)
 - See poster by Alex Nitz
 - Stochastic placement
 - See poster by Stephen Privitera
 - See also: IH, Allen and Sathyaprakash (Phys Rev D 80, 104014)
 Babak (Class.Quant.Grav. 25,195011)

- Now have 4 intrinsic parameters (masses and spins)
 - Determining multi-detector coincidence
 - Demand that the same waveform is significant in >1 observatories
 - Cannon et al (Astrophys.J. 748,136)
 - West et al (In progress)

- Now have 4 intrinsic parameters (masses and spins)
 - More templates = more background events
 - More templates = more computational cost

BNS signal distribution

- Uniform in component masses:
 - Both NSs between 1 and 3 solar masses
- Uniform in component spin magnitudes:
 - Both NSs spin from 0 0.05 or 0 0.4
- Isotropic in all orientation/location angles
- Analytical inspiral only waveforms ("TaylorT4")
- Use aLIGO zero-detuned, high-power sensitivity curve

BNS aligned-spinning search

Plot from Brown, IH, Lundgren and Nitz (arXiv:1207.6406)

BNS non-spinning search

Plot from Brown, IH, Lundgren and Nitz (arXiv:1207.6406)

NSBH signal distribution

- Uniform in component masses:
 - NSs between 1 and 3 solar masses
 - BHs between 3 and 25 solar masses
- Uniform in component spin magnitudes:
 - NS spin from 0 0.4
 - BH spin from 0 1
- Isotropic in all orientation/location angles
- Analytical inspiral only waveforms ("TaylorT4")
- Use aLIGO zero-detuned, high-power sensitivity curve

NSBH aligned-spinning search

Plot from Brown, IH, Lundgren and Nitz (In preparation)

NSBH non-spinning search

Plot from Brown, IH, Lundgren and Nitz (In preparation)

BBH signal distribution

- Uniform in component masses:
 - Both BHs between 3 and 25 solar masses
- Uniform in component spin magnitudes:
 - Both BHs spin from 0 1
- Isotropic in all orientation/location angles
- Analytical inspiral only waveforms ("TaylorT4")
- Use aLIGO zero-detuned, high-power sensitivity curve

BBH aligned-spinning search

Plot from Brown, IH, Lundgren and Nitz (In preparation)

BBH non-spinning search

Plot from Brown, IH, Lundgren and Nitz (In preparation)

Aligned spin summary

- With an aligned spin search, signals are picked up with larger SNR.
- BUT precession matters in a significant region of the NSBH and BBH parameter space
- More templates = more background events
- More templates = more computational cost

How can we search with precessing waveforms?

Dealing with precession?

- If we ignore precession, we will miss systems with certain spin configurations
- To date, no search for precessing systems has been run and published using data from our observatories and has increased detection efficiency relative to a non-spinning search
- •Ideas have been proposed and tested!

Naïve approach

• Why is a precessing search not simply an extension of an aligned spin search?

	Intrinsic Parameters	Number of templates
Non-spin search	Masses (2)	~10 ⁵
Aligned-spin search	Masses, Spin amplitudes (4)	~106
Precessing search	Masses, Spin amplitudes and orientations, inclination, polarization (>8)	????

Phenomenological templates

- Idea: Use unphysical templates that match well with real, precessing templates
- Reality: Tried in searches in S4 and S5, efficiency less than that of a non-spinning search
- Why?
 - Increased freedom meant background triggers were louder
 - No adequate glitch-rejection technique was available

Physical template family

Idea:

- Restrict to single spin systems; good for NSBH
- Decompose waveform into 5 basis vectors to reduce to 4 intrinsic parameters:
 - masses, |S| and S.L
- Different combinations of the 5 basis vectors correspond to different values of extrinsic parameters

Physical template family

- Background events will be louder
- Only useful if aligned-spin search recovers < 88% of SNR

Other effects

- What about sub-dominant amplitude modes?
- What about eccentricity?
- What about matter effects?
- Are our waveform models accurate in all regimes?
- What if the signal is not quite what we expect

Conclusions

- We have a lot of experience with non-spinning searches
- We know how to conduct aligned spinning searches
- There are ideas for how to conduct a precessing search, but so far nothing that increases efficiency
- Detecting all possible systems is vital if we want to do astrophysics in the coming years

Phase changes

Spin affects the frequency evolution of a CBC

$$\begin{split} \frac{\dot{\omega}}{\omega^2} &= \frac{96}{5} \, \eta \, (M\omega)^{5/3} \, \left\{ 1 - \frac{743 + 924 \, \eta}{336} \, (M\omega)^{2/3} - \left[\left(\frac{1}{12} \sum_{i=1,2} \left[\chi_i \left(\hat{\mathbf{L}}_N \cdot \hat{\mathbf{S}}_i \right) \left(113 \frac{m_i^2}{M^2} + 75 \eta \right) \right] \right] - 4\pi \right) (M\omega) \\ &+ \left\{ \left(\frac{34 \, 103}{18 \, 144} + \frac{13 \, 661}{2 \, 016} \, \eta + \frac{59}{18} \, \eta^2 \right) - \left[\frac{1}{48} \, \eta \, \chi_1 \chi_2 \left[247 \, (\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2) - 721 \, (\hat{\mathbf{L}}_N \cdot \hat{\mathbf{S}}_1) (\hat{\mathbf{L}}_N \cdot \hat{\mathbf{S}}_2) \right] \right\} (M\omega)^{4/3} \\ &- \frac{1}{672} \left(4 \, 159 + 15 \, 876 \, \eta \right) \pi \, (M\omega)^{5/3} + \left[\left(\frac{16 \, 447 \, 322 \, 263}{139 \, 708 \, 800} - \frac{1712}{105} \gamma_E + \frac{16}{3} \pi^2 \right) + \left(-\frac{273 \, 811 \, 877}{1 \, 088 \, 640} + \frac{451}{48} \pi^2 - \frac{88}{3} \hat{\theta} \right) \eta \right. \\ &+ \frac{541}{896} \eta^2 - \frac{5 \, 605}{2 \, 592} \eta^3 - \frac{856}{105} \log \left[16 (M\omega)^{2/3} \right] \left[(M\omega)^2 + \left(-\frac{4 \, 415}{4 \, 032} + \frac{358 \, 675}{6 \, 048} \, \eta + \frac{91 \, 495}{1 \, 512} \, \eta^2 \right) \pi \, (M\omega)^{7/3} \right\}, \end{split}$$

Extra terms due to spin of system

Precession

 If spins and orbital angular not aligned the system will precess

$$\dot{\mathbf{S}}_1 = \alpha \left(m_1, m_2, \mathbf{S}_2 \right) \mathbf{S}_1 \times \mathbf{L}_N + \beta \left(m_1, m_2 \right) \mathbf{S}_1 \times \mathbf{S}_2$$

$$\dot{\mathbf{S}}_{2} = \alpha (m_{2}, m_{1}, \mathbf{S}_{1}) \, \mathbf{S}_{2} \times \mathbf{L}_{N} + \beta (m_{2}, m_{1}) \, \mathbf{S}_{2} \times \mathbf{S}_{1}$$

$$\dot{\mathbf{L}}_{N} = \gamma (m_{1}, m_{2}, \mathbf{S}_{2}) \mathbf{S}_{1} \times \mathbf{L}_{N} + \gamma (m_{2}, m_{1}, \mathbf{S}_{1}) \mathbf{S}_{2} \times \mathbf{L}_{N}$$

 \mathbf{L}_{N} -> orbital angular momentum (to dominant order)