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*\We have a well establishec
systems that do not have s

method for searching for
0iN.

- Matched filtering with non-s

ninning waveforms

- Good for binary neutron stars

= Also has some sensitivity to spinning systems

- NSBH, BBH

=\We don’t want to miss bina
- Need to quantify the effects

ries where spin matters!

of spin and improve search
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Talk Overview ——

*\What changes when the components of the binary
have spin?

=Why is it a challenge to search for objects with spin?
= Searching for aligned-spin waveforms?

= Searching for precessing waveforms?

=\What about other effects?

- Sub-dominant modes, matter effects, eccentricity ....



What changes with spin?

= The coupling between the spinning bodies and the
orbital angular momentum cause.

- Changes in the frequency evolution of the system (and
thus frequency of emitted GWSs)

- Changes in the energy lost to GWs (and thus amplitude
of emitted GWSs)

- Precession

Apostolatos et al, Phys. Rev. D 49, 6274
Kidder et al, Phys Rev D 47, 4183
Kidder, Phys Rev D 52, 821

Buonnano et al, Phys Rev D 67, 104025



Frequency evolution

= Spin affects the frequency evolution of a CBC

No spin: -
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Frequency evolution

= Spin affects the frequency evolution of a CBC

With spin:
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What changes with spin?

= The coupling between the spinning bodies and the
orbital angular momentum cause.

- Changes in the frequency evolution of the system (and
thus frequency of emitted GWs)

- Changes in the energy lost to GWs (and thus amplitude
of emitted GWSs)

- Precession

Apostolatos et al, Phys. Rev. D 49, 6274
Kidder et al, Phys Rev D 47, 4183
Kidder, Phys Rev D 52, 821

Buonnano et al, Phys Rev D 67, 104025



What changes with spin?

*The interactions of the spinning bodies with the
orbital angular momentum, each other and
themselves cause:

- Changes in the frequency evolution of the system (and
thus frequency of emitted GWSs)

| o | and 4 i
s s
- Precession

Apostolatos et al, Phys. Rev. D 49, 6274
Kidder et al, Phys Rev D 47, 4183
Kidder, Phys Rev D 52, 821

Buonnano et al, Phys Rev D 67, 104025



Simple Precession

= Most precessing binaries
undergo “simple precession”

-L and S, , precess around J
- L: orbital angular momentum’

- S0 Spin (component’s angular
momentum)

- J: Total angular momentum

Figure from Schmidt, Hannam
and Husa. arXiv:1207.3088

Apostolatos et al, Phys. Rev. D 49, 6274
Brown et al, arXiv:1203.6060



Transitional Precession

*When J becomes very small
“transitional precession” can
occur

=S and L “tumble” during the
transition

= Simple precession resumes
once J becomes larger

Figure from Schmidt, Hannam
- Very rarely OCCUrs and Husa. arXiv:1207.3088

Apostolatos et al, Phys. Rev. D 49, 6274



Phase changes ——

GW strain
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Precession
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=

=Spin will also affect the merger, ringdown etc.

=See talks by:
- Y1 Pan (Analytical modeling of spinning systems)

- Geoffrey Lovelace (Numerical modeling of spin
systems)



How do we search for non-
spinning systems?

How does this non-spinning

search dOW/




Matched-filtering

DATA X TEMPLATE | POWER SPECTRUM
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Matched-filtering —

= Restricting to dominant mode:

.|7.-|:,I'] = A(D, .. 8, 4 ) M f T e rT' ('l-‘l:,-"'-'f. n. I 'i-‘-uI:.'.. F.H.L'.f}}}]

Orientation and location parameters

= Orientation and location parameters enter only as
amplitude or phase shifts
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Non-spin search ——
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Non-spin search

Gravitational wave strain (x1072!)
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Maximised SNR

(s|h) = 4 Re ( £ ) ”{{i ]E‘“[; iy )




Maximised SNR ———
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Maximised SNR
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s

= No trick to deal with the mass range — use a bank of
filters



= No trick to deal with the mass range — use a bank of
filters

14




Mitigating non-Gaussianity s

*Non-Gaussian background will cause loud SNR
events

* The effect of this is mitigated by:
- Coincidence test
- Removing times of poor data quality

- A set of signal based vetoes, such as chi-squared tests
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Is a spinning search needed? o

=How well would we do if we used the non-spinning
search to search for generic systems?

- Some SNR would be lost, but how much?

=\We can measure this:
- Create generic waveforms
- Search for them using the non-spinning bank
- Determine largest SNR
- Compare to SNR obtained using exact waveform

- Known as Fitting Factor



BNS signal distribution

= Uniform in component masses:

- Both NSs between 1 and 3 solar masses

= Uniform in component spin magnitudes:
- Both NSs spin from0-0.050r0-0.4

= |sotropic in all orientation/location angles
= Analytical inspiral only waveforms (“TaylorT4")
= Use aLIGO zero-detuned, high-power sensitivity curve



BNS non-spinning search
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NSBH signal distribution

= Uniform in component masses:
- NSs between 1 and 3 solar masses
- BHs between 3 and 25 solar masses
= Uniform in component spin magnitudes:
- NS spin from 0 - 0.4
- BH spin from 0 -1
= [sotropic in all orientation/location angles
= Analytical inspiral only waveforms (“TaylorT4")

= Use aLIGO zero-detuned, high-power sensitivity curve



NSBH non-spinning searcrl
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BBH signal distribution e

= Uniform in component masses:

- Both BHs between 3 and 25 solar masses

= Uniform in component spin magnitudes:
- Both BHs spin from 0 — 1

= |sotropic in all orientation/location angles
= Analytical inspiral only waveforms (“TaylorT4")
= Use aLIGO zero-detuned, high-power sensitivity curve



BBH non-spinning search
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Summary and caveats ——

* Employing the non-spinning search in the advanced
detector era will result in regions of parameter space
where spin will reduce our detection ability

= Results are only as good as the waveforms we have

- To evaluate BBH performance we really need
precessing waveforms with merger and ringdown

- We did not include any mismatch between the template
waveforms and the “signals”

= Results depend on the chosen distribution of signals

- Restricting the parameter space will help us



How can we search with aligned-
spinning waveforms?

How does an aligned-spinning

search dOW




Aligned spin ——
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Maximised SNR
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Aligned spin challenges

*Now have 4 intrinsic parameters (masses and spins)



Aligned spin challenges

*Now have 4 intrinsic parameters (masses and spins)
- Bank of waveforms must be 4 dimensional

- Geometric placement
- Brown,IH,Lundgren and Nitz (arXiv:1207.6406)
- See poster by Alex Nitz

- Stochastic placement
- See poster by Stephen Privitera
- See also: IH, Allen and Sathyaprakash (Phys Rev D 80, 104014)
Babak (Class.Quant.Grav. 25,195011)



Aligned spin challenges

*Now have 4 intrinsic parameters (masses and spins)
- Determining multi-detector coincidence

- Demand that the same waveform is significant in >1
observatories

- Cannon et al (Astrophys.J. 748,136)
- West et al (In progress)



Aligned spin challenges

*Now have 4 intrinsic parameters (masses and spins)
- More templates = more background events
- More templates = more computational cost



BNS signal distribution

= Uniform in component masses:

- Both NSs between 1 and 3 solar masses

= Uniform in component spin magnitudes:
- Both NSs spin from0-0.050r0-0.4

= |sotropic in all orientation/location angles
= Analytical inspiral only waveforms (“TaylorT4")
= Use aLIGO zero-detuned, high-power sensitivity curve



BNS aligned-spinning sea
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BNS non-spinning search
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NSBH signal distribution

= Uniform in component masses:
- NSs between 1 and 3 solar masses
- BHs between 3 and 25 solar masses
= Uniform in component spin magnitudes:
- NS spin from 0 - 0.4
- BH spin from 0 -1
= [sotropic in all orientation/location angles
= Analytical inspiral only waveforms (“TaylorT4")

= Use aLIGO zero-detuned, high-power sensitivity curve



NSBH aligned-spinning searck
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NSBH non-spinning searcrl
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BBH signal distribution e

= Uniform in component masses:

- Both BHs between 3 and 25 solar masses

= Uniform in component spin magnitudes:
- Both BHs spin from 0 — 1

= |sotropic in all orientation/location angles
= Analytical inspiral only waveforms (“TaylorT4")
= Use aLIGO zero-detuned, high-power sensitivity curve



BBH aligned-spinning sea
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BBH non-spinning search
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Aligned spin summary ——

=\With an aligned spin search, signals are picked up
with larger SNR.

=BUT precession matters in a significant region of the
NSBH and BBH parameter space

*More templates = more background events

=More templates = more computational cost



How can we search with
precessing waveforms?




Dealing with precession?

= |f we ignore precession, we will miss systems with
certain spin configurations

= To date, no search for precessing systems has been
run and published using data from our observatories
and has increased detection efficiency relative to a
non-spinning search

*|deas have been proposed and tested!



Nalve approach

=Why Is a precessing search not simply an extension
of an aligned spin search?

Intrinsic Parameters Number of
templates

Non-spin
search
Aligned-spin
search

Precessing
search

Masses (2) ~10°

Masses, Spin amplitudes (4) ~106

Masses, Spin amplitudes and  ?77??
orientations, inclination,
polarization (>8)



Phenomenological templates e

" |dea: Use unphysical templates that match well with
real, precessing templates

=Reality: Tried in searches in S4 and S5, efficiency
less than that of a non-spinning search

=Why?

- Increased freedom meant background triggers were
louder

- No adequate glitch-rejection technigue was available

Buonnano et al, Phys. Rev. D 67, 104025
Van Den Broeck, IH et al, Phys.Rev. D 80, 024009
Abbott et al, Phys. Rev. D 78, 042002



Physical template famil ——

= |dea:

- Restrict to single spin systems; good for NSBH

- Decompose waveform into 5 basis vectors to
reduce to 4 intrinsic parameters:

- masses, |S|and S.L

- Different combinations of the 5 basis vectors
correspond to different values of extrinsic
parameters

Buonnano et al, Phys.Rev. D 69, 104017
Fazi, PhD Thesis
IH and Fairhurst, Class.Quant.Grav. 28, 134008



Physical template family e
e —

0.20

—— Non spinning (x2 2)
—— Spinning (x? 6)

0.15F

Probability

0.05F

0.005 5 10 15 20
SNR squared
= Background events will be louder

= Only useful if aligned-spin search recovers < 88% of SNR



Other effects

= \What about sub-dominant amplitude modes?
= \What about eccentricity?

= \What about matter effects?
= Are our waveform models accurate in all regimes?

=What if the signal is not quite what we expect



= We have a lot of experience with non-spinning searches
= We know how to conduct aligned spinning searches

= There are ideas for how to conduct a precessing search, but
so far nothing that increases efficiency

= Detecting all possible systems is vital if we want to do
astrophysics in the coming years






Phase changes

= Spin affects the frequency evolution of a CBC
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Precession

= |f spins and orbital angular not aligned the system will
precess

Sl = cx (o e, 84} 8y % Ly + F (g, my) 8, = 8,
S-ﬁ = v (Mg, my, 81} 8s % Ly + 3 (mea, my) 8; x 8§,

I._._a; = =y (mrty, e, 53} 8y = Ly + v [ma,my. 8,)18; x Ly

Ly -> orbital angular momentum (to dominant order)



