
Properties of dense matter 
that might influence neutron 

star mergers dynamics.   

Sanjay Reddy
INT, Univ. of Washington

• Cold Equation of state (Pre-Merger)
• Crust Physics (Precursors) 
• Hot and Dense Matter (Post-Merger)
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Nucleon Stars
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Interior Structure Still Uncertain
  

BUT, equation of state at T=0  and up to ~ 2 ρ0 is 
constrained by nuclear physics. Constraints will improve 
in the short-term.    
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The Nuclear Equation of State
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Nuclear Many Body Theory

Computational Methods: 
Quantum Monte Carlo

Diagrammatic Methods

E(ρn, ρp) : Energy per particle

Chiral potentials and  softer low energy  
potentials obtained using RG.

Phenomenological potentials (Argonne etc) 
tuned to fit scattering and light nuclei. 
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Validation and Benchmarks
• Nuclear properties.
• Empirical nuclear matter properties.
• Cold atom experiments.

Cold Gas of Fermion Atoms (6Li): 

Short-range interaction with tunable scattering length.
Only one interaction scale in the problem = a

E = ξ EF

∆ = β EF

a = ∞Unitary Gas 

ξ = 0.41± 0.1

β = 0.45± 0.05

Expt.
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Cold Atoms & Neutron Matter

Carlson, Fantoni, Gandolfi, Gezerlis, Pethick, Reddy 

Schwenk, Schmidt ..

QMC predicted EoS  and 
pairing gap. 
(few percent)

Diagrammatic methods and 
mean field provide a 
qualitatively correct 
description. 

7



3N Forces in Neutron Matter

Energy
per

Neutron
 (MeV) Empirical Value

16 ±2 MeV

14

18

35
Fermi Gas

(at nuclear saturation density)

8



3N Forces in Neutron Matter

Energy
per

Neutron
 (MeV) Empirical Value

16 ±2 MeV

14 Theory (QMC) 2N ±0.5 MeV

18

35
Fermi Gas

(at nuclear saturation density)

8



3N Forces in Neutron Matter

Energy
per

Neutron
 (MeV) Empirical Value

16 ±2 MeV

14 Theory (QMC) 2N ±0.5 MeV

18
Theory (QMC) 3N ±2 MeV

• Phenomenology suggests repulsive contribution from 
3N forces in neutron matter. (its attractive in nuclei) 

35
Fermi Gas

(at nuclear saturation density)
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3N Forces & Neutron Matter

Gandolfi, Carlson, Reddy (2011)
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Figure 1: Left: Summary of constraints on symmetry energy parameters. The
filled ellipsoid indicate joint Sv − L constraints from nuclear masses. Filled
bands show constraints from neutron skin thickness of Sn isotopes, isotope
diffusion in heavy ion collisions, the dipole polarizability of Pb, and giant
dipole resonances. The hatched rectangle shows constraints from astrophys-
ical modeling of M −R observations. The two oblong enclosed regions show
neutron matter constraints. The white area is the experimentally-allowed
overlap region. Right: Comparison of several commonly-used equations of
state with predictions from neutron matter studies, astrophysical data, and
heavy ion experiments (see Lattimer and Prakash, Astrophys. J. 550:426,
2001 for nomenclature).
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Figure 1. Left: Summary of constraints on symmetry energy parameters. The filled
ellipsoid indicate joint Sv − L constraints from nuclear masses. Filled bands show
constraints from neutron skin thickness of Sn isotopes, isotope diffusion in heavy ion
collisions, the dipole polarizability of Pb, and giant dipole resonances. The hatched
rectangle shows constraints from astrophysical modeling of M−R observations. The
two oblong enclosed regions show neutron matter constraints. The white area is the
experimentally-allowed overlap region. Right: Comparison of several commonly-used
equations of state with predictions from neutron matter studies, astrophysical data,
and heavy ion experiments (see Lattimer and Prakash, Astrophys. J. 550:426, 2001
for nomenclature).

Nuclear 
experiments 
are trying to 
pin down L 
and S (Esym)

Lattimer & Yuan (2102)
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Figure 2: Mass-Radius relation for equations of state with three-neutron interactions corre-
sponding to the bands for different Esym shown in Fig. 1. The intersection with the orange
lines show roughly the central densities realized in stars with different masses and radii. The
dot-dashed lines show the masses of typical neutron star with M= 1.4 Msolar and the recently
observed mass of neutron star of Ref. (1). The yellow region is excluded by the causality con-
straint on the equation of state.

the estimated error in the prediction for the neutron star radius with a canonical mass of 1.4

Msolar. The error due to the current uncertainty in the symmetry energy of ±2 MeV leads to

an uncertainty of about 3 km for the radius, while the error due to uncertainties in the short-

distance structure of the 3n force predicts a radius uncertainty of less than 1 km. The blue

band corresponds to the band of equations of state shown in Fig. 1 with same color. They all

correspond to Esym = 33.7 MeV. Similarly the green band corresponds to the green band of

equations of state shown in Fig. 1 with Esym = 32.0 MeV. The red curve is the prediction for

neutron star mass and radius obtained without 3n interaction and the black curve is one for

which the 3n is very strong with Esym = 35.1 MeV corresponding to the original Urbana IX 3n

force.

11

Mass and Radius

11



8 9 10 11 12 13 14 15 16
R (km)

0

0.5

1

1.5

2

2.5

3
M

 (
M

so
la

r)

Causality
: R>2.9 (G

M/c
2 )

 ρ centra
l
=2ρ 0

 ρ centra
l
=3ρ 0

 ρ ce
ntra

l
=4ρ 0 ρ ce

nt
ra

l
=5

ρ 0
35.1

33.7

32

E
sym

= 30.5 MeV (NN)

1.4 M
solar

1.97(4) M
solar

Figure 2: Mass-Radius relation for equations of state with three-neutron interactions corre-
sponding to the bands for different Esym shown in Fig. 1. The intersection with the orange
lines show roughly the central densities realized in stars with different masses and radii. The
dot-dashed lines show the masses of typical neutron star with M= 1.4 Msolar and the recently
observed mass of neutron star of Ref. (1). The yellow region is excluded by the causality con-
straint on the equation of state.

the estimated error in the prediction for the neutron star radius with a canonical mass of 1.4

Msolar. The error due to the current uncertainty in the symmetry energy of ±2 MeV leads to

an uncertainty of about 3 km for the radius, while the error due to uncertainties in the short-

distance structure of the 3n force predicts a radius uncertainty of less than 1 km. The blue

band corresponds to the band of equations of state shown in Fig. 1 with same color. They all

correspond to Esym = 33.7 MeV. Similarly the green band corresponds to the green band of

equations of state shown in Fig. 1 with Esym = 32.0 MeV. The red curve is the prediction for

neutron star mass and radius obtained without 3n interaction and the black curve is one for

which the 3n is very strong with Esym = 35.1 MeV corresponding to the original Urbana IX 3n

force.

11

Mass and Radius

11



8 9 10 11 12 13 14 15 16
R (km)

0

0.5

1

1.5

2

2.5

3
M

 (
M

so
la

r)

Causality
: R>2.9 (G

M/c
2 )

 ρ centra
l
=2ρ 0

 ρ centra
l
=3ρ 0

 ρ ce
ntra

l
=4ρ 0 ρ ce

nt
ra

l
=5

ρ 0
35.1

33.7

32

E
sym

= 30.5 MeV (NN)

1.4 M
solar

1.97(4) M
solar

Figure 2: Mass-Radius relation for equations of state with three-neutron interactions corre-
sponding to the bands for different Esym shown in Fig. 1. The intersection with the orange
lines show roughly the central densities realized in stars with different masses and radii. The
dot-dashed lines show the masses of typical neutron star with M= 1.4 Msolar and the recently
observed mass of neutron star of Ref. (1). The yellow region is excluded by the causality con-
straint on the equation of state.

the estimated error in the prediction for the neutron star radius with a canonical mass of 1.4

Msolar. The error due to the current uncertainty in the symmetry energy of ±2 MeV leads to

an uncertainty of about 3 km for the radius, while the error due to uncertainties in the short-

distance structure of the 3n force predicts a radius uncertainty of less than 1 km. The blue

band corresponds to the band of equations of state shown in Fig. 1 with same color. They all

correspond to Esym = 33.7 MeV. Similarly the green band corresponds to the green band of

equations of state shown in Fig. 1 with Esym = 32.0 MeV. The red curve is the prediction for

neutron star mass and radius obtained without 3n interaction and the black curve is one for

which the 3n is very strong with Esym = 35.1 MeV corresponding to the original Urbana IX 3n

force.

11

Mass and Radius

P(ε) determines the mass and radius of neutron stars.
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Radius 

A few% measurement of the radius (with different 
systematics) would be a valuable constraint.    
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Radius 

A few% measurement of the radius (with different 
systematics) would be a valuable constraint.    
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Strangeness can alleviate this frustration

• Hyperons
• Kaons
• De-confined Quark Matter

Three possible 
phases:

EΛ(p = 0) = MΛ + VnΛ(ρ) ≤ µB

EK−(p = 0) = MK− + VnK−(ρ) ≤ µe

Λ (uds),K− (d̄ s) Λ (uds),K− (d̄ s)

n

VnY

Neutron Matter - Too Many Down Quarks
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n

p e

Hyperons & Kaon Condensation

n p
e

K-

Kaon Condensed 
Matter

Kaplan & Nelson (1986)

n

p e

Λ

Hyperon Matter

Glendenning (1991)
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Asymptotic Density
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Interactions lead to pairing and color superconductivity

Strongest attraction in color-
antisymmetric channel:
Color-Flavor-Locking

∆ � m2
s

4µ nu = nd = ns
Alford, Rajagopal, Wilczek (1999)

Interactions are nearly 
perturbative - calculable. 
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Quark Matter in Neutron Stars 
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Rel. Fermi gas of u,d,s quarks

•Difficult to predict 
ground state.
•Complicated spectrum 
of excitations (Strongly 
coupled quasi-particles)

•Ground state is CFL. 
•Low energy 
spectrum is  simple 
(Goldstone modes - 
weakly coupled) 

∆ ≥ m2
s

4µ

Interactions are 
non- perturbative. Difficult 
to predict critical density. 
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Phase
Transition Hybrid

Star

Discovery of a 2 M⊙ neutron star rules out  a strong first-
order transition at high density.  
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Phase
Transition Hybrid

Star

Discovery of a 2 M⊙ neutron star rules out  a strong first-
order transition at high density.  
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Soft or Stiff ? 

• At “low” density up to about 2 ρ0 equation of state 
is soft.   

• At intermediate (2-4 ρ0) density equation of state is 
stiff.   

• At higher density we do not know - could be driven 
soft by a phase transition ! 

• At asymptotic density (where QCD is perturbative) 
EoS is soft.   
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Upper Bounds on M & R
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The maximally 
stiff EoS is the 
causal EoS: 

P = c �− �0

Assume that EoS 
is known up to a 
critical density 
and is maximally 
stiff thereafter.   
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Crust Physics
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Neutron Star in  
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Microscopic Structure of the Crust

Negele & Vautherin (1973)
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Separation of Scales
•Protons cluster (pairing + shell gaps) 
•Proton clusters form a Coulomb lattice. 
•Neutrons pair to form a superfluid.   

ωDebye �
c

a
� 0.45 ωplasma

En
er

gy
 (

Te
m

pe
ra

tu
re

)

Longitudinal and 
Transverse Lattice 

Phonons 

ωplasma =

�
4πα Z2 nI

A mn

Nuclei (protons)

Superfluid Phonons 

∆ ∝ EFn exp
�

−1
N(0) Vnn

�

Neutrons

Si
ng

le
 p

ar
tic

le
 

ex
ci

ta
tio

ns
C

ol
le

ct
iv

e 
ex

ci
ta

tio
ns

23



Low Energy Theory of Phonons 

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 

neutrons

protons

neutrons

protons
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Low Energy Theory of Phonons 

ξi(x, y, z)

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 

neutrons

protons

neutrons

protons
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Low Energy Theory of Phonons 

ξi(x, y, z)

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 

neutrons

protons

neutrons

protons

“coarse-grain”

Collective 
coordinates: 

Vector Field: 
Scalar Field:

ξi(r, t)
φ(r, t)

�ψ↑(r)ψ↓(r)� = |∆| exp (−2i θ)
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The Coupled System

Ln+p =
1
2
(∂tφ)2 − 1

2
v2

s (∂iφ)2 +
1
2
(∂tξi)2 −

1
2
(c2

l − g2) (∂iξi)2

v2
s =

nf

mχn
c2
l =

K + 4µs/3
m(np + nb)

nb = γ nnBound neutrons:
Free neutrons: nf = nn (1− γ){Entrainment: protons 

drag neutrons.

Velocities : 

+ g ∂tφ ∂iξi + γ̃ ∂iφ ∂tξi

Longitudinal lattice phonons and superfluid phonons are coupled: 

g = np Enp

�
χn

m(np + nb)
γ̃ =

−nb vs�
(np + nb)nf

Epstein 1988, Cirigliano, Reddy & Sharma (2011) 

nb �=
Entrainment:

number of “bound” neutrons.  

Chamel (2005)
Carter, Chamel & Haensel (2006) 

Bragg scattering off the lattice is important.   

A∗ = A+

�
m∗ −m

m

�
(Acell −A)

A
Acell

A=N+Z
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A∗.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by

v1,2 =

�����X
2



1±

�

1−
4v2

l v2
φ

X2



 (19)

where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A∗.
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where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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III. LOW-ENERGY DYNAMICS OF THE NEUTRON-STAR INNER CRUST

The equations governing the low-energy dynamics of a non-relativistic neutron superfluid immersed in an elastic
crust have been derived in Refs. [8–10]. The corresponding normal modes of oscillation can be found by considering
small perturbations of the densities and currents from their equilibrium values and solving the resulting linearized
hydrodynamic equations. The normal modes have the form of plane waves that vary in space and time as exp[i(qqq ·
rrr − ωt)], where qqq is the wave vector and ω the angular frequency. In an isotropic medium, the normal modes may
be separated into transverse and longitudinal ones. In the long wavelength limit q → 0, the normal modes all have a
sound-like dispersion relation, with ω = vq, v being the mode speed. The speed of the two transverse lattice modes
is given by [9]

vt =

√

S

ρI
, (12)

where S is the shear modulus. Due to interactions between neutron and proton densities and currents, the BA bosons
of the neutron superfluid with velocity vφ are mixed with the longitudinal lattice phonons with velocity v". The
resulting dispersion relation is given by [9, 10]

(ω2 − v2φ q2)(ω2 − v2" q2) = g2mix ω2 q2 , (13)

where the strength of the mixing is characterized by the parameter

gmix = vφ

√

nb
n

np + nb
n

nb
n

nc
n

, (14)

first introduced in Ref. [10]. Although the density interaction also contributes to gmix, preliminary estimates indicate
that it is comparatively unimportant and will be neglected in this study. The velocity of the BA mode is

vφ =

√

nc
n

m

∂µn

∂nn
, (15)

with µn the neutron chemical potential, whereas the velocity of the longitudinal mode of the lattice is

v" =

√

K + 4S/3

ρI
, (16)

where K is the bulk modulus of the electron-ion system. In the inner crust, the electron contribution to the bulk
modulus dominates, and the ion contribution can be safely neglected. As a result, v" is approximately given by [15]

v" =
ωp

qTFe
=

√

np

np + nb
n

np

m

∂µe

∂ne
. (17)

Solving Eq. (13) we find that the eigenmode velocities are given by

v± =
V√
2

√

√

√

√

1±

√

1−
4v2" v

2
φ

V 4
, (18)

where

V =
√

v2" + v2φ + g2mix . (19)

The speed of the transverse lattice phonon in Eq. (12) is unaffected by mixing and is approximately given by [16]

vt $ 0.4
ωp

qD
≈ 0.12

(

Z

50

)1/3

v" . (20)

Note that due to entrainment effects, the expressions (15), (17) and (20) for the velocities of the BA bosons and
lattice phonons differ from those obtained considering either a uniform neutron superfluid or a pure solid crust,
respectively. The self-consistent inclusion of entrainment is an important new element of this study.
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A∗.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by
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where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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III. LOW-ENERGY DYNAMICS OF THE NEUTRON-STAR INNER CRUST

The equations governing the low-energy dynamics of a non-relativistic neutron superfluid immersed in an elastic
crust have been derived in Refs. [8–10]. The corresponding normal modes of oscillation can be found by considering
small perturbations of the densities and currents from their equilibrium values and solving the resulting linearized
hydrodynamic equations. The normal modes have the form of plane waves that vary in space and time as exp[i(qqq ·
rrr − ωt)], where qqq is the wave vector and ω the angular frequency. In an isotropic medium, the normal modes may
be separated into transverse and longitudinal ones. In the long wavelength limit q → 0, the normal modes all have a
sound-like dispersion relation, with ω = vq, v being the mode speed. The speed of the two transverse lattice modes
is given by [9]

vt =

√

S

ρI
, (12)

where S is the shear modulus. Due to interactions between neutron and proton densities and currents, the BA bosons
of the neutron superfluid with velocity vφ are mixed with the longitudinal lattice phonons with velocity v". The
resulting dispersion relation is given by [9, 10]

(ω2 − v2φ q2)(ω2 − v2" q2) = g2mix ω2 q2 , (13)

where the strength of the mixing is characterized by the parameter

gmix = vφ

√

nb
n

np + nb
n

nb
n

nc
n

, (14)

first introduced in Ref. [10]. Although the density interaction also contributes to gmix, preliminary estimates indicate
that it is comparatively unimportant and will be neglected in this study. The velocity of the BA mode is

vφ =

√

nc
n

m

∂µn

∂nn
, (15)

with µn the neutron chemical potential, whereas the velocity of the longitudinal mode of the lattice is

v" =

√

K + 4S/3

ρI
, (16)

where K is the bulk modulus of the electron-ion system. In the inner crust, the electron contribution to the bulk
modulus dominates, and the ion contribution can be safely neglected. As a result, v" is approximately given by [15]

v" =
ωp

qTFe
=

√

np

np + nb
n

np

m

∂µe

∂ne
. (17)

Solving Eq. (13) we find that the eigenmode velocities are given by

v± =
V√
2

√

√

√

√

1±

√

1−
4v2" v

2
φ

V 4
, (18)

where

V =
√

v2" + v2φ + g2mix . (19)

The speed of the transverse lattice phonon in Eq. (12) is unaffected by mixing and is approximately given by [16]

vt $ 0.4
ωp

qD
≈ 0.12

(

Z

50

)1/3

v" . (20)

Note that due to entrainment effects, the expressions (15), (17) and (20) for the velocities of the BA bosons and
lattice phonons differ from those obtained considering either a uniform neutron superfluid or a pure solid crust,
respectively. The self-consistent inclusion of entrainment is an important new element of this study.
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Note that due to entrainment effects, the expressions (15), (17) and (20) for the velocities of the BA bosons and
lattice phonons differ from those obtained considering either a uniform neutron superfluid or a pure solid crust,
respectively. The self-consistent inclusion of entrainment is an important new element of this study.
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where the kkk-space integration is taken over the first Brillouin zone. Differentiating Eq. (22) with respect to µn thus
yields the neutron susceptibility

∂nn

∂µn
= D(µn) +

∫ µn

−∞

dε
∂D(ε)

∂µn
. (24)

Because nuclei in the inner crust are neutron-saturated, the neutron susceptibility is essentially independent of the
neutron bound states except possibly in a small region close to neutron drip. For the reasons explained in Ref. [21], the
density D(ε) of neutron unbound states in a given region of the inner crust is well approximated by the density of s.p.
states in uniform neutron matter for the corresponding density nf

n of dripped neutrons. Using these approximations,
the velocity of the BA mode in the inner crust can be expressed as

vφ =

√

nc
n

nf
n

vfφ , (25)

where vfφ is the velocity of the BA mode in uniform neutron matter at the density nf
n associated with the crustal layer

under consideration. This latter velocity is given by [22]

vfφ =
v2F
3

(1 + F0)

(

1 +
F1

3

)

, (26)

where vF is the Fermi velocity of uniform neutron matter at the density nf
n while F0 and F1 are the corresponding

dimensionless Landau parameters whose expressions for Skyrme interactions can be found in Ref. [23]. We have
evaluated vfφ using the same Skyrme effective interaction BSk14 as that used to determine the equilibrium composition
of the crust.
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FIG. 1: Speeds (in units of c) of the longitudinal (left panel) and transverse (right panel) collective excitations in the inner
crust of a neutron star. Dotted curves show results with neither mixing nor entrainment, dashed curves include effects due to
entrainment only and solid curves include in addition the effects due to mixing.

The speeds of the collective modes in the inner crust of a neutron star are shown in Fig. 1, and listed in the Table
I. Entrainment modifies the spectrum, vφ, v" and vt are all significantly reduced (compare dotted and dashed curves),
and mixing leads to a strong splitting between the longitudinal eigenmodes (note the difference between speeds of
the lowest and highest eigenmodes). With increasing density, a strong suppression of the plasma frequency due to
entrainment leads to rapid decrease in the velocity of transverse and longitudinal lattice phonon modes. Mixing
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where vF is the Fermi velocity of uniform neutron matter at the density nf
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dimensionless Landau parameters whose expressions for Skyrme interactions can be found in Ref. [23]. We have
evaluated vfφ using the same Skyrme effective interaction BSk14 as that used to determine the equilibrium composition
of the crust.
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with a large lattice component at the crust-core boundary. The mode with velocity v+ is a pure lattice mode at
neutron drip and transforms to being a mode which is predominantly a superfluid mode at the crust-core interface.
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v−. The v− mode is predominantly the superfluid phonon (BA) mode near neutron drip and transforms to a mode
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neutron drip and transforms to being a mode which is predominantly a superfluid mode at the crust-core interface.
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Post Merger Physics

• Hot equation of state: New models with neutron 
matter constraints at T=0. 

• Neutrino interactions: Correlations between 
nucleons are strong and can alter the opacity and 
associated transport timescales.  

• Phase transitions or new degrees of freedom 
(pions, kaons, hyperons, quarks) are likely. Will impact 
the dynamics and lifetime of the hyper-massive 
neutron star phase.  
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New EoS for Simulations

• Mean field models constructed to mimic T=0 
behavior predicted by microscopic theories are being 
developed.   
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Fig. 2.— Neutron star mass-radius curve for modern supernova
equations of state. The red (green) region outlines the one (two)
σ confidence limits from Steiner et al. (2010).

tion of light and heavy nuclei within the gas of unbound
nucleons. For the unbound nucleons, we utilize the SFHo
and SFHx relativistic mean-field interactions. At low
densities, the description of nuclei is based on measured
experimental binding energies (Audi et al. 2003), which
are combined with theoretical nuclear structure calcu-
lations for exotic nuclei without measured data. Here
the finite range droplet model of Möller et al. (1995) was
chosen because of its excellent reproduction of experi-
mental binding energies, with a rms deviation of only
0.669 MeV. Due to the use of nuclear structure data,
shell effects are automatically included. HS goes beyond
the single nucleus approximation and utilizes a distribu-
tion of different nuclear species, and the results for light
nuclei are in agreement with more sophisticated quan-
tum many-body models (Hempel et al. 2011). Also, the
recent experimental study of Qin et al. (2012) indicates
that the HS model is well suited for the description of
matter at finite temperature and densities around a few
tenths of saturation density. At even larger densities in
the HS model the disappearance of nuclei and smooth
transition to uniform nuclear matter is assured by an
excluded volume description. Finally we calculate the
EOS in tabular form, covering densities from 10−12 to 10
fm−3, temperatures from 0.1 to 160 MeV, and electron
fractions from 0 to 0.6, including detailed information
about the nuclear composition and the thermodynamic
properties. The tables are suitable for use in astrophysi-
cal simulations and are available online.1

The resulting EOS will be compared below with the
LS EOS, with the different compressibilities 180 MeV
(LS180), 220 MeV (LS220), and 375 MeV (LS375), and
with STOS. Moreover, we will also include into our com-
parison results obtained using the quark-hadron hybrid
EOS from Fischer et al. (2011). We select the model with

1 See http://phys-merger.physik.unibas.ch/~hempel/eos.html.

bag constant B1/4 = 155 MeV and including corrections
from the strong coupling constant, αS = 0.3 (hereafter
QB155αS03), where the phase transition to quark mat-
ter takes place at nuclear saturation density for temper-
atures around 10 MeV and Ye ! 0.3 (for details, see
Fischer et al. 2011). The hadronic part of this EOS ta-
ble is based on the STOS EOS, and these two EOS are
identical at sub-saturation densities where quarks are not
present.

3. CORE-COLLAPE SUPERNOVA SIMULATIONS

In this section, we will compare results from SN sim-
ulations obtained using the SFHo EOS with the stan-
dard EOS LS180 and the two TM1 RMF parameteriza-
tions STOS and HS. Furthermore, we will also compare
SFHo with the hybrid EOS QB155αS03, for which ex-
plosions were obtained recently even in spherically sym-
metric simulations (Fischer et al. 2011).

TABLE 4
Neutrino reactions considered including references.

Reactiona References
νe + n → p + e− Bruenn (1985)
ν̄e + p → n+ e+ Bruenn (1985)

νe + (A,Z − 1) → (A,Z) + e− Langanke et al. (2003),
Hix et al. (2003)

ν +N → ν′ +N Bruenn (1985)
ν + (A,Z) → ν′ + (A,Z) Bruenn (1985)

ν + e± → ν′ + e± Bruenn (1985),
Mezzacappa & Bruenn (1993a),
Mezzacappa & Bruenn (1993b)

ν + ν̄ → e− + e+ Bruenn (1985)
Mezzacappa & Messer (1999)

ν + ν̄ +N +N → N +N Hannestad & Raffelt (1998)
νe + ν̄e → νµ/τ + ν̄µ/τ Buras et al. (2003)

aNote: ν = {νe, ν̄e, νµ/τ , ν̄µ/τ} and N = {n, p}

3.1. Supernova model

Our core-collapse SN model, AGILE-BOLTZTRAN,
is based on general relativistic radiation hydrodynam-
ics in spherical symmetry. It employs three-flavor Boltz-
mann neutrino transport (see Liebendoerfer et al. 2004,
and references therein). We use the standard weak pro-
cesses following Bruenn (1985), see Table 4 for details.
In addition, we include the improved rates for electron-
captures on heavy nuclei from Langanke et al. (2003)
and Hix et al. (2003), weak magnetism and nucleon re-
coil based on Horowitz (2002), and the annihilation of
trapped electron neutrino pairs has been implemented in
Fischer et al. (2009) following Buras et al. (2003).
For NSE conditions (T > 0.45 MeV), we implement

the baryon EOS tables specified above. For non-NSE,
we assume the ideal gas of 28Si for the baryon EOS. On
top of the baryons, also for NSE, contributions from elec-
trons, positrons and photons are added to the EOS using
Timmes & Arnett (1999). Recently, this Si-gas approxi-
mation has been replaced by a nuclear reaction network,
based on the nuclear composition given by the progeni-
tor model. It allows, e.g., for a smooth NSE-to-non-NSE
transition as well as to simulate a large domain of the
progenitor star (for details, see Fischer et al. 2010).
The simulations we will discuss further below are

launched from iron-core progenitors. We use the

Violate Neutron 
Matter Constraints

Hempel+ (2012), G. Shen+ (2011), Steiner+ (2012)

Steiner+ (2012)
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NEUTRINO TRANSPORT

• RHS of the Boltzmann Equation. 

∂f(E1)

∂t
=

�
d3k3
(2π)3

R(E1, E3, cos θ) f3(1− f1)

−R(E3, E1, cos θ) f1(1− f3)

+R(E1,−E3, cos θ) (1− f1)(1− f3)

−R(−E1, E3, cos θ) f1 f3

Dense 
Matter

q0 = E1 − E3

q0 = −E1 − E3q0 = E1 + E3
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MANY-PARTICLE DYNAMICS 

•Neutrinos “see” more than one particle in the medium. 

•Nature of spatial and temporal correlations between nuclei, 
nucleons and electrons affect the scattering rate.   

•Nucleon dispersion relation is altered. Energy shifts and 
lifetimes play a role. are important.   

Response of Interacting System

!

q
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" "
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q

emission

scattering
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τcollision = Collision Time

T

At small energy and 
momentum transfer, 
neutrinos cannot 
resolve a single nucleon.    

Sawyer (1975, 1989)
Iwamoto & Pethick (1982)
Horowitz & Wherberger (1991)
Raffelt & Seckel (1995)
Reddy, Prakash & Lattimer (1998, 1999) 
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NEUTRINO CROSS SECTIONS
Differential Scattering/Absorption Rate: 

response function of the medium

dΓ(E1)

d cos θ dq0
=

G2
F

4π2
(E1 − q0)

2
�
(1 + cos θ) SRPA

V (q0, q) + (3− cos θ) SRPA
A (q0, q)

�

reduction in the differential cross sections in the region
q0 /q�vF , where vF is the Fermi velocity. The presence of
a collective state in the region q0 /q�vF enhances the cross
sections in this region. This enhancement, however, is not
significant enough to override the large suppression seen in
the region where q0 /q is small.
Integrating over the q0-q space, we obtain the total cross

section per unit volume or equivalently the inverse collision
mean free path. This is shown in Fig. 12. The left panels
show the cross sections calculated by taking into account
only effects due to M*. The results shown are for different
temperatures and for a neutrino energy E���T . The right
panels show the ratio �RPA /�M* . The resulting increase in �
due to the presence of a repulsive p-h interaction is approxi-
mately a factor of 2.5 at low temperature and decreases with
increasing temperature.

The density dependence of the Fermi-liquid parameters is
poorly constrained by data. Although numerous theoretical
models have been constructed to gain insight into their high-
density behavior, there appears to be no general consensus at
the present time. Microscopic calculations of neutron matter
differ quantitatively depending on their underlying assump-
tions. These model dependences are so large that no generic
qualitative trends may be identified. The exception is the
isoscalar parameter F0, which becomes positive and in-
creases with increasing density, a feature which may be ex-
pected on general grounds as the repulsive vector meson
contributions dominate. The uncertainties associated with F0�
are related to the model dependence of the nuclear symmetry
energy. In models that favor a less than linear increase of a4
with density, F0� is expected to decrease with increasing den-
sity �see Eq. �35��. State-of-the-art microscopic many-body
calculations favor a modest increase in the nuclear symmetry
energy at intermediate densities �27,31�; thus, we may expect
that F0� will generally decrease. The parameter G0� is related
to pion condensation, since it is a measure of the spin-isospin
susceptibility of nuclear matter. The large repulsive character
of G0� strongly inhibits s-wave pion condensation in the vi-
cinity of the nuclear saturation density. However, at higher
densities pion condensation cannot be ruled out a priori
�30,31�. Thus, while we may expect G0� to decrease some-
what with increasing density, quantitatively it remains very
sensitive to the underlying model. The density dependence of
the isoscalar spin parameter G0, which is not well con-
strained even at nuclear density, is largely unknown.
Faced with these uncertainties, we begin by assuming that

the spin-dependent parameters are fixed at their empirical
values �determined at saturation density�, and use schematic
models to explore the influence of the density dependence of
F0 and F0� . For this purpose, we employ a simple parametric
form for the EOS �41� �see Appendix A�. This model does
not explicitly address the role of spin-dependent interactions
and assumes that the favored ground state is spin symmetric.
In particular, we choose the Skyrme-like models labeled
‘‘SLn2’’ with a linear increase in the nuclear symmetry en-
ergy. The index ‘‘n’’ in SLn2 takes on the values n�1, 2,
and 3 for which K�120, 180, and 240 MeV, respectively.
The magnitudes of the RPA corrections to the neutrino mean
free paths for these different EOS models are shown in Fig.
13. Since the dominant contribution to the scattering cross
section arises from the axial vector response function, the
magnitudes of the RPA corrections are mostly sensitive to
the spin-dependent parameters. Thus, although the vector re-
sponse of the nuclear medium is modified by about 50–80%
at high density due to RPA effects, the changes due to the
varying stiffness of the dense matter EOS are small. This
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nuclear matter for q�E��30 MeV. The Fermi-liquid parameters
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Fermi-liquid parameters in Eq. �36�. The left panel shows results for
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tion, and the right panel shows the effect of RPA correlations.
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SUMMARY
• Equation of state up to about 2 ρ0 is constrained by nuclear 

theory.  Transition from soft to stiff is generic and is driven by the 
three nucleon interaction.      

• Normal modes and transport properties in the crust are 
influenced by its solid and superfluid character. Entrainment and 
mixing are important. New longitudinal mode with small damping.       

• Equations of state at finite T with neutron matter constraints are 
being developed. G. Shen et al,  Steiner et al, Hempel et al. - 
Better suited for BNS mergers.         

• Neutrino transport in the dense core is similar to that  
encountered in PNSs. Diffusion time scales of ~ 1 s. Nuclear 
correlations are important.           
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