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What is there to measure?
What parameters are there are to measure?

• The simplest model of a compact binary in a circular orbit has 9 
parameters

• Add spins for another six

• and neutron stars have equation of state parameters

• Then there are possible deviations from the GR model...
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2 masses, time, sky position, distance, 3 orientation angles

2 magnitudes, 4 orientation angles

Tidal deformability of each star λ1, λ2
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The observations
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Advanced detectors will provide huge amounts of data
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GW signal

Fortunately the observed inspiral is well described by post-Newtonian 
theory and understanding of the detectors. (i.e. we have a mapping 
from parameters ⇒ waveform)

The gravitational wave signal contains a lot of information encoded by 
the amplitude and phase evolution. (30-40 bits at signal-to-noise of 10)

“Just” need to convert the observed waveform ⇒ parameters 4
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Parameter Estimation
Our signal model H has some free parameters θ, represent the 
knowledge of those parameters with a probability distribution

where “p” represents probability density.

After observing some data d, calculate the posterior probability 
density function (PDF)

Using likelihood, prior and evidence,
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p(�|d,H) =
p(d|�, H)p(�|H)

p(d|H)

p(d|H) =

Z

⇥
p(�|H)p(d|�, H)d�

Z

⇥
p(⇥�|H, I)d⇥� = 1
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Model Selection
When we observe real signals will not know the “true” waveform.

• Use Bayesian evidence to compare models in light of the 
data

• Model selection tells us which is a better fit

• Automatically takes into account Occam’s razor

Compute Odds Ratio between A and B:

A and B can have different numbers of parameters.
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P (A|d, I)
P (B|d, I) =

P (A|I)
P (B|I)

R
d✓Ap(✓A|A, I)p(d|✓A, A, I)R
d✓Bp(✓B |B, I)p(d|✓B , B, I)
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Sampling the probability 
distribution
For a linear model we can find the best fit values easily, but if not we need to 
search the parameter space.

Search codes: maximise over parameters if possible. Parameter estimation: 
compute full probability density function (PDF)

Generating samples directly from posterior PDF is hard.

• Need to know the shape of the distribution, which is the point of doing 
the analysis.

Instead, use probabilistic algorithms (MCMC or Nested Sampling)

• Generate random points from the parameter space

• Evolve on a random walk

• Keep samples dependent on the value of the posterior PDF.
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MCMC
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Nested Sampling
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Degeneracies and 
Correlations
Correlations and (partial) 
degeneracies exist between 
certain parameters:

• Distance / inclination

• Sky location

• Polarisation / phase

• Masses / spins

• Spin magnitude / tilt
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Marginalisation
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p(�1|H, I) =

Z
p(⇥�|H, I)d�2 . . . d�N

Eliminate nuisance 
parameters by integrating out

Can be done easily with 
collection of posterior 
samples by producing 
histograms for the 
parameters of interest. 
Can use 2D histograms 
to see correlations, etc
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Implementation
Implementing these algorithms efficiently and correctly is a tricky task in itself.

MCMC & nested sampling algorithms have been developed over several years by 
the LSC/Virgo CBC group.

• MCMC: Röver, et al CQG 23 (2006) [4 params]; PRD 75 (2007) [9 params] ... van der Sluys et al ApJL 688 L61 
(2008) [15 params] .... Raymond et al CQG 26 (2009) ... Littenberg & Cornish PRD 80 (2009)

• Nested Sampling: Veitch & Vecchio PRD 78 (2008) [4 params] ... Feroz et al CQG 26 (2009) ... Veitch & Vecchio 
PRD 81 (2010) [9 params]

Multiple approaches vital for cross-checking results (and healthy competition)

Combined forces to produce LALInference: open source library for GW inference. 
(part of LALSuite)

Working with the LSC Waveforms group has reduced run times from O(month) to 
O(day) for spinning, precessing waveforms. Further improvements still needed.
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Advanced Detector Network
• From ~2015, Advanced detectors 

will begin to come online.

• When at design sensitivity, are 
expected to detect per year:

• 0.4 - 400 BNS

• 0.2 - 300 NSBH

• 0.4 - 1000 BBH

How well will we do with these 
signals?

13[Abadie et al, C.Q.G. 27 (1) 2010]
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What will we measure?

Analysed 750 BNS (1.4-1.4) sources distributed 
throughout parameter space to build up statistics about 
resolvability of first 9 parameters.

Looked at potential network configurations to compare 
performance. [Veitch et al PRD 85 2012]
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Masses
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Masses - components
Although chirp mass 
measured well, large 
statistical uncertainty in η 
translates to high 
correlation between 
recovered masses.
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Distance
• Distance is highly correlated with 

inclination angle

• Can be improved with:-

• EM counterpart (GRB)

• Precessing orbital plane from 
non-aligned spin effects

• Using higher amplitude modes of 
the signal (esp. for BBH) which 
have different emission patterns 
(See Ben Farr’s poster)
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Sky localisation
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See also Steve Fairhursts’s talk, Vivien Raymond’s talk; Fairhurst CQG 28 (10) (2011); 
Nissanke et al ApJ 739:99 (2011); Klimenko et al PRD 83 (2011)
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Breaking sky position 
degeneracy

20

face-on BNS, SNR 10
95% area: 11.75 deg2
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Breaking sky position 
degeneracy
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edge-on BNS, SNR 10
95% area: 45.5 deg2

Friday, 3 August 12



Breaking sky position 
degeneracy
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edge-on BNS, SNR 10
95% area: 45.5 deg2
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Break sky position 
degeneracy - spin

Precessing spin also breaks degeneracy in sky position, 
including for only 2 detectors. (see talk by Vivien 
Raymond)
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Sky Localisation of Gravitational Waves 8

Figure 2. Two-dimensional PDFs of the sky position for the MCMC runs as labelled.
The colours show the different probability intervals (1-σ, 2-σ and 3-σ for red, yellow
and blue respectively). The black dashed lines mark the position in the sky of the
injection for each run. Left column (a): results for the reference runs, experiment 1
(signal injection at R.A. = 14.3 h, Dec = 11.5◦). The symbol ◦ denotes the “gap”
discussed in the text. Right column (b): results for experiment 3: an MCMC run
with a signal injection at ◦ (R.A. = 13.25h, Dec = 23◦). For the non-spinning case,
the PDFs are very similar to those in the original run, whereas they are very different
for the spinning cases (notice the difference in the axis ranges).
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and blue respectively). The black dashed lines mark the position in the sky of the
injection for each run. Left column (a): results for the reference runs, experiment 1
(signal injection at R.A. = 14.3 h, Dec = 11.5◦). The symbol ◦ denotes the “gap”
discussed in the text. Right column (b): results for experiment 3: an MCMC run
with a signal injection at ◦ (R.A. = 13.25h, Dec = 23◦). For the non-spinning case,
the PDFs are very similar to those in the original run, whereas they are very different
for the spinning cases (notice the difference in the axis ranges).
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Figure 2. Two-dimensional PDFs of the sky position for the MCMC runs as labelled.
The colours show the different probability intervals (1-σ, 2-σ and 3-σ for red, yellow
and blue respectively). The black dashed lines mark the position in the sky of the
injection for each run. Left column (a): results for the reference runs, experiment 1
(signal injection at R.A. = 14.3 h, Dec = 11.5◦). The symbol ◦ denotes the “gap”
discussed in the text. Right column (b): results for experiment 3: an MCMC run
with a signal injection at ◦ (R.A. = 13.25h, Dec = 23◦). For the non-spinning case,
the PDFs are very similar to those in the original run, whereas they are very different
for the spinning cases (notice the difference in the axis ranges).

spin1: 0.5, θ1=55°

Raymond et al Class.Quant.Grav 26 114007
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Sub-optimal cases
2 Detector network:

Sky localisation 
reduced to ring

Extrinsic parameters 
become degenerate

23
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Time of coalescence
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Extrinsic parameters

25

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

95% Probability Interval s (rads)

Fr
ac

tio
n 

of
 e

ve
nt

s

 

 

AHLV
HHLV
HILV
HHJLV

polarisation

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

95% Probability Interval f (rads)

Fr
ac

tio
n 

of
 e

ve
nt

s

 

 

AHLV
HHLV
HILV
HHJLV

inclination

Friday, 3 August 12



Spins
No large-scale Monte Carlo 
results (until recently 
waveform generation too 
slow)

Ability to measure spin 
magnitude and angles is 
dependent on the 
orientation of the system

• Prefer edge-on 
systems, as 
precession becomes 
visible

26
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Beyond point masses
Beyond the point particle 
approximation, the effects of matter 
on the inspiral phase can be 
parameterised by tidal deformability 
λ

• Marginal effect in adv. 
detectors, but in competition 
with systematic errors (see 
poster by Favata)

• Combination of multiple 
sources can boost 
detectability (Markakis et al 
WSPC proceedings (2010) )

See Jocelyn Read’s talk
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For strange quark matter stars, there is no minimum
mass, so the radius (and therefore !) approaches zero as
the mass approaches zero. At larger masses, the tidal
deformability of SQM stars remains smaller than most
normal matter stars because, despite having large Love
numbers, the radii of SQM stars are typically smaller.

Error estimates !! for an equal-mass binary inspiral at
100 Mpc are also shown in Fig. 2 for both Advanced LIGO
and the Einstein Telescope. They will be discussed in the
next section.

IV. MEASURING EFFECTS ON GRAVITATIONAL
RADIATION

We wish to calculate the contribution from realistic tidal
effects to the phase evolution and resulting gravitational
wave spectrum of an inspiraling neutron-star binary. In the
secular limit, where the orbital period is much shorter than
the gravitational radiation reaction time scale, we consider
the tidal contribution to the energy E and energy flux
dE=dt for a quasicircular inspiral using the formalism
developed by Flanagan and Hinderer [11], which adds
the following leading-order terms to the post-Newtonian
point-particle corrections (PN-PP corr.):

EðxÞ ¼ $ 1

2
M"x

!
1þ ðPN-PP corr:Þ

$ 9
m2

m1

!1

M5
x5 þ 1 $ 2

"
; (17)

_EðxÞ ¼ $ 32

5
"2x5

!
1þ ðPN-PP corr:Þ

þ 6
m1 þ 3m2

m1

!1

M5
x5 þ 1 $ 2

"
: (18)

Here !1 ¼ !ðm1Þ and !2 ¼ !ðm2Þ are the tidal deform-
abilities of stars 1 and 2, respectively.M ¼ m1 þm2 is the
total mass, " ¼ m1m2=M

2 is the symmetric mass ratio,
and x is the post-Newtonian dimensionless parameter
given by x ¼ ð!MÞ2=3, where ! is the orbital angular
frequency. One can then use

dx=dt ¼
_E

dE=dx
(19)

to estimate the evolution of the quadrupole gravitational
wave phase " via d"=dt ¼ 2! ¼ 2x3=2=M. The effect of
the tidal distortion on these quantities was previously
computed in Refs. [8,9,12] in terms of the gauge-
dependent orbital separation. When these results are con-
verted to the gauge invariant quantity x, taking into account
the tidal correction to the radius-frequency relation, the
expressions obtained in the previous studies agree with our
Eqs. (17) and (18).

Each equation of state gives in this approximation a
known phase contribution as a function of m1 and m2, or
as a function of the total massM ¼ m1 þm2 and the mass

ratio m2=m1, via !ðm1Þ and !ðm2Þ for that EOS. Although
we calculated ! for individual neutron stars, the universal-
ity of the neutron-star core equation of state allows us to
predict the tidal phase contribution for a given binary
system from each EOS. Following [11], we discuss the
constraint on the weighted average

~! ¼ 1

26

!
m1 þ 12m2

m1
!1 þ

m2 þ 12m1

m2
!2

"
; (20)

which reduces to ! in the equal-mass case. The contribu-
tion to d"=dx from the tidal deformation, which adds
linearly to the known PP phase evolution, is

d"

dx

########T
¼ $ 195

8

x3=2 ~!

M5"
: (21)

The weighted average ~! is plotted as a function of chirp
massM ¼ ðm1m2Þ3=5=M1=5 in Fig. 3 for three of the EOS
and for three values of ": equal mass (" ¼ 0:25), large but
plausible mass ratio [42] (" ¼ 0:242), and extremely large
mass ratio (" ¼ 0:222).
We can determine the significance of the tidal effect on

gravitational waveforms in a given frequency range by
considering the resulting change in phase accumulated as
a function of frequency. In the case of template-based
searches, for example, a drift in phase of half a cycle leads
to destructive interference between the signal and tem-
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FIG. 3. Weighted ~! for a range of chirp mass M and sym-
metric mass ratio ", for three of the EOSs considered above. The
values of " equal to f0:25; 0:242; 0:222g correspond to the mass
ratios m2=m1 ¼ f1:0; 0:7; 0:5g. Also plotted (as in Fig. 2) are the
uncertainties !~! in measuring ~! for a binary at 100 Mpc
between 10–450 Hz. The solid, dashed, and dotted curves
correspond to !~! for " ¼ 0:25, 0.242, and 0.222, respectively.

HINDERER et al. PHYSICAL REVIEW D 81, 123016 (2010)

123016-6

Hinderer, T., Lackey, B. D., Lang, R. N., & Read, J. S. (2010). 
Phys Rev D, 81(1)
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Tests of Relativity
• Binary pulsars provide best strong-

field laboratory so far

• J0737-3039 relativistic binary
• (v/c) ~ 10-3

• GM/(Rc2) ~ 10-6

• Contrast with binary black hole or 
neutron star just before merger
• (v/c) ~ 0.4

• GM/(Rc2) ~ 0.2

28
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Testing GR with Bayesian 
Methods
Parameters beyond known 
GR(+EOS) physics form a 
larger model which embeds 
GR.

Projection of real (AG) template 
onto GR parameter space can 
introduce bias (even when GR 
appears to be favoured).

Detecting AG amounts to 
performing model selection 
between the larger and smaller 
models.
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�h

hGR(✓true)

hGR(✓best fit)

manifold of
GR waveforms

correction
due to AG

GR pars

hAG(✓true)
�h?

possible signals
after adding noise

FF = (hAG(✓true),hGR(✓bestfit))
|hAG(✓true)|·|hGR(✓bestfit)|

From poster by
Michele Vallisneri

O
AG,GR

⇡ exp

h
x

2

2 +

p
2(1� FF )SNR + (1� FF )SNR

2
i

Friday, 3 August 12



TIGER - testing PN 
expansion

• Parameterise deviations 
away from GR as changes 
in the PN coefficients

• Perform parameter 
estimation of the 

• Perform model selection 
with GR model (                )
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Tests of Relativity - PPE
Can also parameterise beyond the PN expansion

and perform PE/model selection with the α,a and β,b

(See talk by Nico Yunes)
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h̃(f) = h̃GR(f)
⇥
1 + ↵

�
v
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FIG. 5: Here we plot the log of the evidence (E) for the ppE
model characterizing a ppE injection as the prior volume on b
is increased. The evidence for the ppE model increases with
the prior volume on b. The growth in the evidence can be
attributed to the growth in the variance of β, which lessens the
severity of the ‘Occam penalty’ for more model parameters.

In summary, the cheap bounds provide a fair approxi-
mation to the bounds that can be derived from Bayesian
model selection, and can generally be trusted to within
an order of magnitude.

C. Fitting Factor

Another quantity of interest is the fitting factor, which
measures how well one template family can recover an
alternative template family. To define the fitting factor,
we must first define the match between two templates h
and h′ as

M =
(h|h′)

√

(h|h)
√

(h′|h′)
. (22)

The match is related to the metric distance between tem-
plates [69] by M = 1− 1

2gij∆xi∆xj , where the metric is
evaluated with the higher-dimensional model (appropri-
ate when dealing with nested models). The fitting factor
FF is then defined as the best match that can be achieved
by varying the parameters of the h′ template family to
match the template belonging to the the other family, h.
Another interpretation for the fitting factor is as

the fraction of the true signal-to-noise ratio SNR =
√

(h|h) that is recovered by the frequentist statistic

ρ = max[(h|h′)/
√

(h′|h′)]. The imperfect fit leaves be-
hind a residual (h− h′) with SNR2

res = χ2, which can be
minimized by adjusting the amplitude of h′ to yield

SNR2
res = (1− FF2)SNR2 . (23)

Assuming that a residual with SNR∗ is detectable, and
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working in the limit where FF ∼ 1, we have

1− FF #
SNR2

∗

2 SNR2 . (24)

We see then that the ability to detect departures from
GR scales inversely with the square of the SNR, as given
by Eq. (24). On the other hand, the detectable difference
between the parameters in the two theories will scale in-
versely with a single power of the SNR. This is because
this detectable difference is proportional to the square-
root of the minimized match function and

√

min(gij∆xi∆xj) #
SNR∗

SNR
, (25)

and the metric is independent of SNR. This reasoning
applies to both the additional model parameters of the
alternative theory, e.g. ∆xi = (α,β), and the physical
source parameters such as the masses and distance. We
then expect both the bounds on the ppE model param-
eters and the biases caused by using the wrong template
family to scale inversely with SNR. This scaling is in
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(h|h) that is recovered by the frequentist statistic

ρ = max[(h|h′)/
√

(h′|h′)]. The imperfect fit leaves be-
hind a residual (h− h′) with SNR2

res = χ2, which can be
minimized by adjusting the amplitude of h′ to yield

SNR2
res = (1− FF2)SNR2 . (23)

Assuming that a residual with SNR∗ is detectable, and
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FIG. 6: UPPER PANEL: Bayes factors for a z = 1 LISA ppE
injection with parameters (a,α, b,β) = (0, 0,−1.0, β).
LOWER PANEL: Bayes factors for a z = 1 LISA ppE injec-
tion with parameters (a,α, b,β) = (0.5,α, 0, 0).

working in the limit where FF ∼ 1, we have

1− FF #
SNR2

∗

2 SNR2 . (24)

We see then that the ability to detect departures from
GR scales inversely with the square of the SNR, as given
by Eq. (24). On the other hand, the detectable difference
between the parameters in the two theories will scale in-
versely with a single power of the SNR. This is because
this detectable difference is proportional to the square-
root of the minimized match function and

√

min(gij∆xi∆xj) #
SNR∗

SNR
, (25)

and the metric is independent of SNR. This reasoning
applies to both the additional model parameters of the
alternative theory, e.g. ∆xi = (α,β), and the physical
source parameters such as the masses and distance. We
then expect both the bounds on the ppE model param-
eters and the biases caused by using the wrong template
family to scale inversely with SNR. This scaling is in

Cornish et al PRD 84 (6) 2011
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Systematic Errors
• Waveform errors primarily affect 

recovery of the mass and 
intrinsic parameters.

• So precision tests rely on low 
systematic error in the waveform 
approximants

• Expect large systematic as well 
as statistical errors in mass ratio. 
(See poster by Marc Favata)

• Can we account for this 
uncertainty? - “ignorance is 
preferable to error”

32
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Calibration Errors
• Calibration of detectors is 

imperfect in phase and 
amplitude.

• Can these errors in the 
observation bias the 
parameter estimation?

• Vitale et al performed Monte 
Carlo parameter estimation 
with a range of realistic 
calibration error curves
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Figure 3. (color online) The first CE realization for the
amplitude (top) and phase (bottom).

the meaning of which is clear: it measures the shift
introduced in the estimate of ✓↵ by the CEs in units
of standard deviations calculated from the probability
distribution for the same parameter in the absence of
CEs. For each injection, say the i-th, in the catalog
E
j

we can calculate the quantity (6.1):

⌃↵

i

⌘ ✓
i

↵

m

� ✓
i

↵

e

�✓
i

↵

e

, i=1..250 (6.2)

where ✓
i

is the median for parameter ✓
i

. We also
compute distributions for this quantity for all of the
injections in the catalog, and for all the parameters
of the model waveform. The resulting distributions
will look in general similar to Fig. 4 which shows the
histogram for the chirp mass M measured using the
BHNS catalog5 and the first CE realization.

Note that the distribution for ⌃M looks quite sym-
metric and well centered around zero, meaning that
there is not a net bias introduced by CEs but, in-
stead, some of the injections in the catalog acquire a
positive bias while others a negative one. We found

5 The results are similar for the three catalogs. To avoid having
too many figures, we have chosen to show plots only for the
BHNS catalog. It is understood that one would get very
similar plots for the other two catalogs.

Figure 4. (color online) The distribution of ⌃M for the
signal in the BHNS catalog, using the first CE realization.
The vertical blue line correspond to a null shift.

that this behavior is common to all parameters ex-
cept for the distance. The reason is easy to under-
stand: with other parameters fixed, the distance is
inversely proportional to the amplitude of the signal,
and is therefore directly a↵ected by the amplitude er-
rors of the transfer function. As an example, in the
same CEs realization, Fig. 3, the amplitude errors are
positive for the three IFOs. The over-estimated am-
plitudes result in an under-estimate of the distance, so
the source is inferred to be closer than in the absence
of CEs, Fig. 5.

Figure 5. The distribution of ⌃D for the signals in the
BHNS catalog, using the first CE realization. The vertical
blue line correspond to a null shift.

As a summary for our results, we will report the
mean ⌃, and standard deviation �⌃, of the distribu-

tion for ⌃↵, together with the median, ⌃ , the 5th and

95th percentiles, for each parameter and each catalog,
averaged over the 10 CE realizations. It is important
to remember that ⌃s represent the e↵ect of systematic
errors and are not normally distributed. In particular
2�⌃ does not to contain ⇠ 66% of the results. The
results are summarized in Tables III, IV and V.
The distribution for ⌃↵ has been calculated using

only the injections whose network SNR is greater than

Vitale et al  P.R.D. 85 6 (2011)
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Calibration Errors
• Σ = ratio of systematic 

error to statistical std. dev.

• Extrinsic parameters are 
affected much more 
severely by the calibration 
errors

• Results indicate that 
statistical errors will 
dominate for population of 
initial detections.
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The averaged numbers we gave in Tables III, IV and
V describe the typical scenario, as they were obtained
averaging among the 10 CE curves, reducing the im-
pact of CE curves which had produced the largest
spreads. An alternative representation is shown in
Fig. 7, where we plot the median of ⌃ for each pa-
rameter (except  and �0, as we have seen they are
always estimated with huge errors) averaged over the
10 CE realizations, with error bars whose min and
max values are the worst 5th and 95th percentiles en-
countered in the 10 CE runs. These error bars yield
a conservative estimate of the impact of calibration
errors when the actual CE realization and the statis-
tics of the injection parameters line up to produce the
largest shifts in parameter estimation.

Figure 7. The median of ⌃ averaged among the 10 CE
realizations. The lower end of the error bars corresponds
to the lowest 5th percentile encountered in the various CE
runs, while the upper end corresponds to the highest 95th
percentile. We do not show  and �0 as those parameters
are very poorly estimated. The upper panel refers to the
BNS catalog, the middle one to the BHNS and the bottom
one to the BBH catalog.

Apart from the 1D results we have reported, it is
interesting to verify how the confidence in our knowl-
edge of the position of the source in the sky changes
because of the CEs, as this will capture the joint vari-
ation of RA and dec, taking into account their corre-
lation. Let us call M

e

= (dec
e

,RA
e

) the point in the
unit sphere whose spherical coordinates are given by
the median value of RA and dec calculated in the ex-
act run. Using the line element of a 2D sphere, we can
write the size of the random error in the estimation of
M

e

as

✏2
e

⌘ �dec2
e

+ sin
⇣⇡
2
� dec

e

⌘2
�RA2

e

.

Adding the CEs will similarly yield the median sky
location M

m

=(dec
m

,RA
m

), and we can measure the
distance in the unit sphere between the points M

e

and
M

m

:

✏2
me

= (dec
m

�dec
e

)2+sin
⇣⇡
2
� dec

e

⌘2
(RA

m

�RA
e

)2

We weight the distance between the exact and mea-
sured position in the unit sphere by the size of the
random error box of the exact run:

� ⌘ ✏
me

✏
e

, (6.3)

with � = 0 implying that the shift introduced by the
CEs is null, and � > 1 that it is larger than the un-
certainties due to the noise. In Fig. 8 we show the
median of �, together with 5th and 95th percentiles,
for all the CEs and the three mass bins.

Figure 8. The median of � (introduced in the main text)
when using the various CE curves (shown in the abscissa
label) and the three mass bins (from the top to the bot-
tom: BNS, BHNS, BBH). The error bars show the 5th and
95th percentiles. Note that the ordinate scale varies in the
subplots.

It is evident that CE curve 2 leads to average shifts
which are much larger than for the other CE curves
(the median of � is larger than 0.5 in the three cata-
logs), and to very large spreads (95th percentile larger
than 1.6). Note however that we are weighting the dis-
tance in the unit sphere by the width of the random
error box of the exact run. Thus a large value of �
does not imply a large shift in radians. We have in-
deed verified that some of the signals that go in the

Vitale et al  P.R.D. 85 6 (2011)
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Glitches
Likelihood function used in parameter estimation is based on the 
assumption that the noise follows a stationary Gaussian 
distribution with known power spectrum

Glitches are instances of noise that deviate from the background 
Gaussian distribution, likelihood is no longer a good description 
of the data.
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Glitches

For detection, already use signal-based vetoes and 
background estimation through time slides

Bayesian P.E. approaches to glitch robustness

• Include a glitch hypothesis in the noise model

• Incoherent signal model [Veitch et al 2010]

• Glitch fitting (wavelets) [Littenburg et al 2010]

• Relax Gaussian likelihood function [Röver et al 2011]
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Challenges Ahead
Advanced detectors and first detections will require parameter 
estimation to be ready!

We have come a long way to get a reliable, reviewed code base ready, 
but further goals include:

• Truly rapid Bayesian sky localisation

• Long templates (starting @10 Hz)

• glitches occurring during the templates

• Handling systematic uncertainties better

• Keep making things faster!!
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Questions

?
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