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What Is there to measure?

What parameters are there are to measure?

¢ [he simplest model of a compact:-binary in-a circular-orbit has 9
parameters

2 Masses;Hime; sk position:aIStance;
¢ Add spins for another six

Z-nagnittides; 4-onentation-angles

¢ and neutron stars have equation of state parameters

Tidal deformability of each star A1, Ao

e [hen there are possible deviations from the GR model...
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1he observations

Advanced detectors will provide huge amounts of data
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GW signal

000

Fortunately the observed: inspiralis well- described by post-Newtonian
theory and understanding of the detectors. (i.e. we have a mapping
from parameters = waveform)

The gravitational wave signal contains a ot of information encoded by
the amplitude and phase evolution. (30-40 bits at signal-to-noise of 10)

“Just” need to convert the observed waveform = parameters
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Parameter estimation

Our signal model H has some free parameters 0, represent the
knowledge of those parameters with a probability distribution

/ (O H, I)de =1
S

11 J)

where “o” represents: probability density.

After observing some data d, calculate the probabllity

density function (PDF)_ it H )p(0|H)

Using:likelihood; prior:and-evidence,
2 /@ p(|H)p(d|6, H)d6
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Model Selection

When we olbserve real signals will not know: the “true™ waveform.

¢ Use Bayesian evidence to compare models inlight of the
data

¢ Model selection tells us which: isa better fit

o Automatically takes into-account ©Occam’s razor

Compute Odds Ratio between A and B:

PAE); [ doap(0a|A, Dp(dloa, A T)
PBIE) fd0sp(0s|B, I)p(d|fs, B, I)

A and B can have different numbers of parameters.
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Sampling the probabillity
distribution

For a linear model we can find the best fit values easily, but if not we need to
search the parameter space.

Search codes: maximise over parameters if possible. Parameter estimation:
compute full probability-density function (PDF)

Generating samples directly: from-posterior-PDFE is hard.

o Need to know: the shape of the distribution, which is the point of doing
the analysis.

Instead, use probabilistic algorithms (MCMC or Nested Sampling)
¢ (Generate random points from the parameter space

e FEvolve on arandom walk

o Keep samples dependent on the value of the posterior PDF.
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M (Mg)

Signal: 6.084

Iterction: 0.00E+0C
Data points: 0.00E+00Q

Chain:

log(L):

Friday, 3 August 12



Nested Sampling

Iteration=1

8
Chirp Mass
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Degeneracies and
Correlations

Correlations and (partial)
degeneracies exist between
certain parameters:
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o Distance / Inclination
o Sky location

¢ Polarisation / phase
e Masses / spins

e Spin magnitude / tilt
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Viarginalisation U R

....................................

....................................

Eliminate nlisance R 7' T
parameters by integrating out

p(01|H, I) = /p(é]H,J dbs -

)
Can be done easily. with
collection of posterior
samples by producing
histograms for the .
parameters of interest. [ S
Can use 2D histograms ||jr—
to see correlations, etc

d(gN .......

.......................

............................

Friday, 3 August 12




N

Implementation

Implementing these algorithms efficiently and correctly is-a tricky task in itself.

MCMC & nested sampling algorithms -have been developed over several years by
the LSC/Virgo CBC group.

e  MCMC: Rover, et al CQG 23 (2006) [4 params]; PRD-75 (2007) [9 params] ...-van der Sluys et al ApJL. 688 L61
(2008) [15 params] ..... Raymond et al CQG 26 (2009) ... Littenberg & Cornish PRD 80 (2009)

e Nested Sampling: Veitch & Vecchio PRD 78 (2008) [4 params] ... Feroz et al CQG 26 (2009) ... Veitch & Vecchio
PRD 81 (2010) [9 params]

Multiple approaches vital for cross-checking results (and healthy competition)

Combined forces to produce LALInference: open source library for GW inference.
(part of LALSuite)

Working with the LSC Waveforms group has reduced run times from O(month) to
O(day) for spinning, precessing waveforms. Further improvements still needed.
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https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html
https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

NIger
Advanced Detector Network

e From ~2015, Advanced detectors
will begin to come online.

¢ \Vhen at design sensitivity, are = T iR,
expected to detect per year: Sl 4

° 0.4 -400 BNS
o 0.2 - 300 NSBH
e 0.4 -1000 BBH

How well will we do with these
signals?
[Abadie et al, C.Q.G. 27 (1) 2010] 2
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VWhat will we measure?

Analysed 750 BNS (1.4-1.4) sources distriouted

throughout parameter space to build up statistics about
resolvability of first 9 parameters.

Looked at potential network configurations to compare
performance. [Veitch et al PRD 85 2012]
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Vlasses

Fraction of events
Fraction of events
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Vlasses - components

............................................

............................

Although chirp mass R | -
measured well, large 4
statistical uncertainty in-n )

translates to high

correlation between

recovered masses. ..... ..... .....

....................................
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Distance

distance

e Distance is highly correlated with
Inclination angle

e Can be improved with:-

-0.4 -0.2 0.0 0.2 0.4 0.6
cos(iota)

e EM counterpart (GRB)

e Precessing orbital plane from
non-aligned spin effects

¢ Using higher amplitude modes of
the signal (esp. for BBH) which
have different emission patterns
(See Ben Farr’s poster)
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Sky localisation
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See also Steve Fairhursts’s talk, Vivien Raymond’s talk; Fairhurst CQG 28 (10) (2011);
Nissanke et al Apd 739:99 (2011); Klimenko et al PRD 83 (2011)
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Breaking sky position
degeneracy

face-on BNS, SNR 10
95% area: 11.75 deg?
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Break sky position
degeneracy - spin

Precessing spin also breaks degeneracy:in sky: position,
including for only 2 detectors. (see talk by Vivien
Raymond)

| | |
SpIng0 SPINGT0.5:64=20°
I RIS 00
68.3%: 197 deg” 99.7%: 1356 deg” 68.3% 52.2 ded? 99.7%: 283 deg?
| o T
| |

Raymond et al Class.Quant.Grav 26 114007
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Sub-optimal cases

2 Detector network:

Sky localisation
reduced to ring

Extrinsic parameters
become degenerate
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11ime of coalescence
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EXtrinsIC parameters
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SpINS

N
(=)

No large-scale Monte Carlo
results (until recently
waveform generation too
slow)
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Ability to measure spin
magnitude and angles is
dependent on the | 16

orientation of the system N .

2 3 1.0

* Prefer edge-on > 2 08

systems, as 2 5 0°

. o) © 04

precession becomes 30 Y
visible 0" 00 05 1o 20 -05 00 05 10

costiltl costilt2
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Beyond point masses

Beyond the point particle
approximation, the effects of matter
on the inspiral phase can be
parameterised by tidal deformalbility
A

¢ Marginal effect in-adv.
detectors, butin competition
with systematic errors (see
poster by Favata)

e Combination-of multiple
sources can boost
detectability (Markakis et al
WSPC proceedings (2010) )

1.5
Chirp Mass (M)

See Jocelyn Read's talk Hinderer, T., Lackey, B. D., Lang, R. N., & Read, J. S. (2010).
Phys Rev D, 81(1)
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lests of Relativity

e Binary pulsars provide best strong-

field lalboratory so far (
e JO737-3039 relativistic binary o ﬁ,,--|
e (v/c)~10°

e GM/(Rc?) ~ 108

¢ (Contrast with-binary: black hole or
neutron star just before merger

e (v/c)~0.4

e GM/(Rc?) ~ 0.2
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Testing GR with Bayesian
Methods

Parameters beyond known
GR(+EOS) physics form a g
larger model which embeds dueto AG
GR.

possible signals
after adding noise

Projection of real (AG) template
onto GR parameter space can
iIntroduce bias (even when GR |
manifold of
appears to be favoured). BRI

From poster by
Michele Vallisneri

Detecting AG amounts to P — (hacOuue)har(Ovesisit))
performing model selection haG(Otrue)|1har(Opesisit)
between the larger and smaller

models. Oac.n = exp |5 +/2(1— FF)SNR + (1 — FF)SNR?|
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TIGER - testing PN
expansion
o)~ (1) 73 s i

n=0

e Parameterise deviations
away from GR as changes
IN the PN coefficients

wn, 35 %[1 T Awn]

* Perform parameter otV |
estimation of the Awn V) R | A A

\\: . . . . .
INY)

e Perform model selection QOB

with GR model (A = 0) s |

0.000 0 100 200 300 400 500

In Qg R
Li et al PRD 85 (8) 2012; JPCS 363 (1) 2012 30

(See poster by Tjonnie Li)



lests of Relativity - PPE

Can also parameterise beyond the PN expansion

h(f) = har(f) {1 +a (L) et

and perform PE/model selection with the o,a and ;b

(See talk by Nico Yunes) Comish et al PRD 84 (6) 2011
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Bayes Factor

0.006 0.0065 0.007 0.0075 0.008 0.0085 0.009 0.0095 0.01

B
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Systematic Errors

o \Naveform errors primarily affect
recovery of the mass and
Intrinsic parameters.

e 50 precision tests rely on-low
systematic error in the waveform
approximants

¢ [Xpect large systematic as well
as statistical errors in-mass ratio.
(See poster by Marc Favata)

e (Can we account for this
uncertainty? - “ignorance is
preferable to error”

32
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Calibration Errors

e Calibration of detectors s
imperfect in phase and
amplitude.

e Can these errors in the
observation bias the
parameter estimation?

¢ \/Iltale et al performed Monte
Carlo parameter estimation
with a range of realistic

calioration error curves Vitale et al PR.D. 85 6 (2011)
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Calibration Errors

e > — ratio of systematic
error to statistical std. dev.

b3

e EXtrinsic parameters are
affected much more

1.0
0.5/
0.0
0.5/
1.00
1.5
1.0
0.5/
1.5
1.0
0.5/
0.0
0.5
1.0(
1.5/
2.0

severely by the calibration N_
errors -
e Results indicate that o
statistical errors will I 14 S = = e S S I S
dominate for population of e M T RA 1
initial detections. i
Vitale et al P.R.D. 85 6 (2011)
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Glitches

Likelihood function used in parameter estimation 1S based on the
assumption that the noise follows: a stationary: Gaussian
distrioution with - known power: spectrum

[ *a 2—
. i Wl fy:0)
p({d}|0) o exp —zk: 372

U} 18) o e = el = (il = 2 i)

Glitches are instances of noise that deviate from the background

Gaussian distribution, likelinood is no longer a good description
of the data.
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Glitches

For detection, already use signal-lbased vetoes and
background estimation through time: slides

Bayesian P.E. approaches to glitch robustness
o |nclude a glitch hypothesis in the noise model
¢ |[ncoherent signal model [Veitch et al 2010}
o (Glitch fitting (wavelets) [Littenburg et al 2010}

o Relax Gaussian likelihood function [Rover et al 2011]
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Challenges Ahead

Advanced detectors and first detections will- require parameter
estimation to lbe ready!

We have come a long way to get a reliable; reviewed code base ready,
out further goals include:

o [ruly rapid Bayesian sky-localisation
e | ong templates (starting @10 Hz)
¢ glitches occurring during the templates

¢ Handling systematic uncertainties better

o Keep making things faster!!
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Questions




