Testing General. Relativity with Future GTW Observations

Scientific Workshop

Montana State University, April 5th-April rith, 2013
http://www.physics.montana.edu/gravity/workshop/workshop.htm

Part of

Celebrating Binstein
Mega-Outreach Đvent Montana State University, April 1st-April 6th, 2013

Testing Generall Relativity with Compact Binary Inspirals

Nico Yunes

Montana State University

Aug. 3rd, 2012,
KITP, UCSB

Standing on the shoulders of...

Clifford Will, Jim Gates, Stephon Alexander, Abhay Ashtekar, Sam Finn, Ben Owen, Pablo Laguna, Bmanuele Berti, Uli Sperhake, Dimitrios Psaltis, Avi Loeb, Vitor Cardoso, Leonardo Gualtieri, Daniel Grumiller, David Spergel, Trans Pretorius, Neil Cornish, Scott Hughes, Carlos Sopuerta, Takahiro Tanaka, Jon Gair,

An incomplete summary of the theory behind

 Inspiral GW tests of GR.Paolo Pani, Antoine Klein, Kent Yagi, Iaura Sampson, Leo Stein, Sarah Vigeland, Katerina Chatziioannou, Haris Apostolatos, Philippe Jetzer, Leor Barack, Curt Cutler, Kostas Glampedakis, Stanislav Babak, Ilya Mandel, Chao Li, Mliu Huerta, Chris Berry, Alberto Sesana, Carl Rodriguez, Georgios Lukes-Gerakopoulos, George Contopoulus, Chris van den Broeck, Walter del Pozzo, Jon Veitch, Nathan Collins, Deirdre Shoemaker, Sathyaprakash, etc.

Trust But Verify

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2012 in prog.

Trust But Verify

Trust But Verify

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2012 in prog.

Trust But Verify

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2012 in prog.

Trust But Verify

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2012 in prog.

Trust But Verify

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2012 in prog.

Trust But Verify

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2012 in prog.

Trust But Verify

Verify and only then Trust

Unconstrained GR modifications can alter astrophysical inferences (fundamental bias).

Verify and only then Trust

Unconstrained GR modifications can alter astrophysical inferences (fundamental bias).

Verify and only then Trust

Unconstrained GR modifications can alter astrophysical inferences (fundamental bias).

Cornish, Sampson, Yunes \& Pretorius, 2011
Modified theories can:
i) Change GW amplitude -> error in GW DL and inc. angle. ii) Change GW phase -> error in GW Mchirp, mass ratio, EOS. iii) Change ISCO -> error in $\mathbb{E M}$ spin measurement.

Road Map

ppE Theory

pp® Implementation

What I will leave out

$>$ Data analysis [Veitch].
> Detailed waveform modeling within GR [Pan]
> Non-Integrable orbits, Chaos, Poincare Islands
>Cosmology.
>Quasi-normal ringdown and merger tests.
pp® Theory

Test Classification

Non-Generic Tests

- Pick a theory and test it. تg. Brans-Dicke Theory.
- Problem: what theory do you pick? Do we have to consider all possibilities?

Will, PRD 50, 1994,
Will, PRD 57, 1998,
Scharre \& Will, PRD 65, 2002,
Will \& Yunes, CQG 21, 2004,
Berti, et al PRD 71, 2005,
Stavridis \& Will, CQG 28, 2009,
Arun \& Will, CQG 26, 2009,
Yunes, Pretorius \& Spergel, PRD 81, '10,
Mirshekari, Yunes \& Will, PRD 85, '12.

Test Classification

Non-Generic Tests

Generic Tests

- Pick a theory and test it. Eg. Brans-Dicke Theory.
- Problem: what theory do you pick? Do we have to consider all possibilities?

Will, PRD 50, 1994,
Will, PRD 57, 1998,
Scharre \& Will, PRD 65, 2002,
Will \& Yunes, CQG 21, 2004,
Berti, et al PRD 71, 2005,
Stavridis \& Will, CQG 28, 2009,
Arun \& Will, CQG 26, 2009,
Yunes, Pretorius \& Spergel, PRD 81, '10,
Mirshekari, Yunes \& Will, PRD 85, '12.

- Search for modelindependent GR deviations.

Test Classification

Non-Generic Tests

- Pick a theory and test it. Đg. Brans-Dicke Theory.
- Problem: what theory do you pick? Do we have to consider all possibilities?

Will, PRD 50, 1994,
Will, PRD 57, 1998,
Scharre \& Will, PRD 65, 2002,
Will \& Yunes, CQG 21, 2004,
Berti, et al PRD 71, 2005,
Stavridis \& Will, CQG 28, 2009,
Arun \& Will, CQG 26, 2009,
Yunes, Pretorius \& Spergel, PRD 81, '10, Mirshekari, Yunes \& Will, PRD 85, '12.

Generic Tests

- Search for modelindependent GR deviations.

Yunes \& Pretorius, PRD 80, '09, Yunes \& Hughes, PRD 82, '10, Yagi, Stein, Yunes and Tanaka '11, Cornish, Sampson, Yunes \& Pretorius, '11, del Pozzo, et al, PRD 83, '11
Li, et al, '12,
Arun, CQG '12
Chatziioannou, Yunes \& Cornish, '12,
"Penrose-Like Diagram"

"Penrose-Like Diagram"

$\tilde{h}_{G R}\left(f ; \vec{\lambda}_{G R}\right)$

"Penrose-Like Diagram"

$$
\begin{aligned}
& \tilde{h}_{G R}\left(f ; \vec{\lambda}_{G R}\right)
\end{aligned}
$$

"Penrose-Like Diagram"

$$
\tilde{h}_{G R}\left(f ; \vec{\lambda}_{G R}\right)
$$

"Penrose-Like Diagram"

$$
\tilde{h}_{M G}\left(f ; \vec{\lambda}_{G R}, \lambda_{M G}\right) \tilde{h}_{G R}\left(f ; \vec{\lambda}_{G R}\right)
$$

"Penrose-Like Diagram"

$\tilde{h}_{M G}\left(f ; \vec{\lambda}_{G R}, \lambda_{M G}\right) \tilde{\tilde{h}}_{G R}\left(f ; \vec{\lambda}_{G R}\right)$

"Penrose-Like Diagram"

"Penrose-Like Diagram"

$$
\tilde{h}_{M G}\left(f ; \vec{\lambda}_{G R}, \lambda_{M G}\right) \tilde{h}_{G R}\left(f ; \vec{\lambda}_{G R}\right)
$$

"Penrose-Like Diagram"

Theoretical ppE Construction

Yunes \& Pretorius, PRD 2009
Mirshekari, Yunes \& Will, PRD 2012
Chatziioannou, Yunes \& Cornish, PRD 2012

Theoretical ppE Construction

> O. (Consider comparable-mass, non-spinning compact inspirals.)

Theoretical ppE Construction

> O. (Consider comparable-mass, non-spinning compact inspirals.)

$$
>\text { I. Parametrically deform the Hamiltonian. } \quad \begin{gathered}
A=A_{\mathrm{GR}}+\delta A \\
\delta A_{H, R R}=\bar{\alpha}_{\mathrm{H}, \mathrm{RR}} v^{\bar{a}_{\mathrm{H}, \mathrm{RR}}}
\end{gathered}
$$

Theoretical ppE Construction

> O. (Consider comparable-mass, non-spinning compact inspirals.)
$>\mathrm{I}$. Parametrically deform the Hamiltonian.
$>$ II. Parametrically deform the RR force.

Yunes \& Pretorius, PRD 2009
Mirshekari, Yunes \&e Will, PRD 2012
Chatziioannou, Yunes \&e Cornish, PRD 2012

Theoretical ppE Construction

> O. (Consider comparable-mass, non-spinning compact inspirals.)

$>$ I. Parametrically deform the Hamiltonian.
II. Parametrically deform the RR force.

> III. Deform waveform generation.

$$
h=F_{+} h_{+}+F_{\times} h_{x}+F_{s} h_{s}+\ldots
$$

Theoretical ppE Construction

> O. (Consider comparable-mass, non-spinning compact inspirals.)
> I. Parametrically deform the Hamiltonian.
> II. Parametrically deform the RR force.

$$
\begin{gathered}
A=A_{\mathrm{GR}}+\delta A \\
\delta A_{H, R R}=\bar{\alpha}_{\mathrm{H}, \mathrm{RR}} v^{\bar{a}_{\mathrm{H}, \mathrm{RR}}}
\end{gathered}
$$

> III. Deform waveform generation.

$$
h=F_{+} h_{+}+F_{x} h_{x}+F_{s} h_{s}+\ldots
$$

> IV. Parametrically deform \& propagation.

$$
E_{g}^{2}=p_{g}^{2} c^{4}+\tilde{\alpha} p_{g}^{\tilde{a}}
$$

Theoretical ppE Construction

> O. (Consider comparable-mass, non-spinning compact inspirals.)
> I. Parametrically deform the Hamiltonian.
> II. Parametrically deform the RR force.

$$
\begin{gathered}
A=A_{\mathrm{GR}}+\delta A \\
\delta A_{H, R R}=\bar{\alpha}_{\mathrm{H}, \mathrm{RR}} v^{\bar{a}_{\mathrm{H}, \mathrm{RR}}}
\end{gathered}
$$

> III. Deform waveform generation.

$$
h=F_{+} h_{+}+F_{\times} h_{x}+F_{s} h_{s}+\ldots
$$

> IV. Parametrically deform \& propagation.

$$
E_{g}^{2}=p_{g}^{2} c^{4}+\tilde{\alpha} p_{g}^{\tilde{a}}
$$

> Result: To leading PN order and leading GR deformation

$$
\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}
$$

ppE Recovery of Theories

$$
\tilde{h}=\tilde{h}_{\mathrm{GR}}\left[1+\alpha_{\mathrm{ppE}}(\pi \mathcal{M} f)^{a_{\mathrm{ppE}} / 3}\right] e^{i \beta_{\mathrm{ppE}}(\pi \mathcal{M} f)^{b} \mathrm{ppE} / 3}
$$

Theory	$\alpha_{\text {ppe }}$	$a_{\text {ppE }} \beta_{\text {ppe }}$		$b_{\text {ppe }}$
Jordan-Brans-Dicke-Fierz	$-\frac{5}{96}{\frac{S}{}{ }^{2}}^{\text {BD }} \eta^{2 / 5}$	-2	$-\frac{5}{3584} \frac{S^{2}}{\omega_{\mathrm{BD}}} \eta^{2 / 5}$	-7
Conservative Einstein-Dilaton-Gauss-Bonnet gravity	${ }^{5} \eta^{-4 / 5} \zeta_{3}$	4	${ }^{25}{ }^{64} \eta^{-4 / 5} \zeta_{\text {EDGB }}$	-1
Dissipative Einstein-Dilaton-Gauss-Bonnet gravity	0	.	$-\frac{5}{7168} \zeta_{3} \eta^{-18 / 5} \frac{\left(m_{1}-m_{2}\right)^{2}}{m^{2}}$	-7
Massive Graviton	0	.	$-\frac{\pi^{2} D M}{\lambda_{g}^{2}(1+z)}$	-3
Lorentz Violation	0	.	$-\frac{\pi^{2}-\gamma}{(1-\gamma)} \frac{D_{\gamma}}{\lambda_{1-\gamma}^{2-\gamma}} \frac{M^{1-\gamma}}{(1+z)^{1-\gamma}}$	$-3 \alpha_{\text {LV }}-3$
$G(t)$ Theory	$-\frac{5}{512} \dot{G} M$	-8	$-\frac{25}{65536} \dot{G}_{c} \mathcal{M}$	-13
Extra Dimensions			$-\frac{75}{2554344} \frac{d M}{d t} \eta^{-4}\left(3-26 \eta+24 \eta^{2}\right)$	-13
Non-Dynamical Chern-Simons Gravity	$\alpha_{\text {PV }}$	3	$\beta_{\mathrm{PV}} \quad$ Siemens \& Yunes,	$\begin{array}{\|c\|} \hline 6 \\ \text { LRR }{ }^{\prime} 13 \end{array}$

II.

pp® Implementation

Questions for pp®

Questions for ppษ

Questions for pp\#

Templates/ Theories

Questions for pp\#

Templates/ Theories	GR	

Questions for pp玉

Templates/ Theories	GR	ppz

Questions for pp玉

Templates/ Theories	GR	
GR		ppE

Questions for ppษ

Templates/ Theories	GR	ppE
GR	Business as usual	

Questions for pp¥

Templates/ Theories	GR	PpE
GR	Business as usual	Quantify the statistical significance that the detected event is within GR. Anomalies?

Questions for pp玉

Templates/ Theories	GR	ppE
GR	Business as usual	Quantify the statistical significance that the detected event is within GR. Anomalies?
Not GR		

Questions for pp E

Templates/ Theories	GR	PpF
GR	Business as usual	$\begin{aligned} & \text { Quantify the statistical } \\ & \text { significance that the detected } \\ & \text { event is within GR. Anomalies? } \end{aligned}$
Not GR	Quantify fundamental bias introduced by filtering non-GR events with GR template	

Questions for pp E

Templates/ Theories	GR	Ppe
GR	Business as usual	Quantify the statistica significance that the detected within GR. Anomalies?
Not GR	Quantify fundamental bias introduced by filtering non-GR vents with GR templates	Can we measure deviations from GRu characterized by non-GR signals? Model Evidence.

Questions for pp E

Templates/	GR	PpE
Theories		

$>$ Confusion I: Astrophysical Environment -> b <-ry and non-integer.
Yunes \&e Miller \&e Thornburg, 2011, Yunes, Kocsis \& Loeb, 2011, Kocsis, Yunes \&e Loeb, 2011.

Questions for pp E

Templates/	GR	PpE
Theories		

Confusion I: Astrophysical Environment $->\mathrm{b}<-\mathrm{r}$ and non-integer.
Yunes \&e Miller \&e Thornburg, 2011, Yunes, Kocsis \& Loeb, 2011, Kocsis, Yunes \&e Loeb, 2011.
Confusion II: Noise Environment -> different b for different sources

Questions for pp¥

Templates/ Theories	$G R$	PpE
$G R$	Business as usual	Quantify the statistical significance that the detected event is within GR. Anomalies?
Not GR	Quantify fundamental bias introduced by filtering non-GR events with GR templates	Can we measure deviations from GR characterized by non-GR signals? Model Evidence.

Confusion I: Astrophysical Environment $->\mathrm{b}<-\mathrm{r}$ and non-integer.
Yunes \&e Miller \&e Thornburg, 2011, Yunes, Kocsis \& Loeb, 2011, Kocsis, Yunes \&e Loeb, 2011.
Confusion II: Noise Environment -> different b for different sources
Confusion III: Mismodeling -> Only a problem for sys with large M

Constraining GR Deviations

GR Signal/ppß Templates, 3-sigma constraints, SNR = 20

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/ppß Templates, 3-sigma constraints, SNR = 20

aLIGO projected bounds
$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/ppß Templates, 3-sigma constraints, SNR = 20

Double Binary Pulsar bounds
aLIGO projected bounds
$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/ppß Templates, 3-sigma constraints, SNR = 20

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20
Newt

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20
Newt 1PN

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3 -sigma constraints, SNR = 20
Newt 1PN 1.5

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3 -sigma constraints, SNR = 20
Newt 1PN 1.5 2

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20
Newt 1PN 1.5 2 2.5

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20
Newt 1PN 1.522 .53

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3 -sigma constraints, SNR = 20
Newt IPN $1.5 \quad 22.533 .5$

$\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20
Newt IPN $1.5 \quad 22.533 .5$

Weak Field

$$
\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}
$$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011
Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20

$$
\tilde{h}_{h}=\tilde{h}_{G R}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}
$$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Constraining GR Deviations

GR Signal/pp® Templates, 3-sigma constraints, SNR = 20
Newt 1PN 1.5 22.533 .5

Weak Field

$$
\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\alpha f^{a}\right) e^{i \beta f^{b}}
$$

Yunes \& Hughes, 2010,
Cornish, Sampson, Yunes \& Pretorius, 2011 Li, et al, 2011.

Learning How to Breath before How to Crawl

Learning How to Breath before How to Crawl

Can we extend the ppझ framework to constrain the existence of additional non-GR polarizations?

Yes

Arun 2012, Chatziioannou, Yunes \& Cornish, 2012.

Learning How to Breath before How to Crawl

Can we extend the ppß framework to constrain the existence of additional non-GR polarizations?

Yes

Arun 2012, Chatziioannou, Yunes \& Cornish, 2012.
Given a non-GR pp® detection, can we identify what type of GR correction such a detection corresponds to?

Yes

Yunes, et al., 2010, 2011, 2012

Learning How to Breath before How to Crawl

Can we extend the ppß framework to constrain the existence of additional non-GR polarizations?
Yes

Arun 2012, Chatziioannou, Yunes \&e Cornish, 2012.
Given a non-GR pp玉 detection, can we identify what type of GR correction such a detection corresponds to?

Yes

Yunes, et al., 2010, 2011, 2012

Given multiple detectors, how do we leverge the ppE Scheme? Sampson, Cornish, \& Yunes, 2012.

Learning How to Breath before How to Crawl

Can we extend the ppß framework to constrain the existence of additional non-GR polarizations?
Yes

Arun 2012, Chatziioannou, Yunes \&e Cornish, 2012.
Given a non-GR ppæ detection, can we identify what type of GR correction such a detection corresponds to?

Yes

Yunes, et al., 2010, 2011, 2012

Given multiple detectors, how do we leverge the ppE Scheme? Sampson, Cornish, \&e Yunes, 2012.

If we observe a non-GR signal with all its PN corrections or with a nonanalytic deformation, like a Heavisde function, can a simple leadingorder pp® search signal a departure from GR?

Sampson, Cornish, \&e Yunes, 2012.

Learning How to Breath before How to Crawl

Can we extend the ppæ framework to constrain the existence of additional non-GR polarizations?

> Yes

Arun 2012, Chatziioannou, Yunes \&e Cornish, 2012.
Given a non-GR ppE detection, can we identify what type of GR correction such a detection corresponds to?

Yes

Yunes, et al., 2010, 2011, 2012

Given multiple detectors, how do we leverge the ppE Scheme? Sampson, Cornish, \&e Yunes, 2012.

If we observe a non-GR signal with all its PN corrections or with a nonanalytic deformation, like a Heavisde function, can a simple leadingorder ppE search signal a departure from GR? Sampson, Cornish, \&e Yunes, 2012.

How do Systematics Affect the ppE Implementation? We'll see...
Yagi, Yunes \& Cornish, 2012.

What does it all Mean?

Doveryai, no proveryai

What does it all Mean?

GW Observations of compact binary inspirals will provide unparalleled information about fundamental physics. It is our responsibility to leverage this information to learn about physics:

Doveryai, no proveryai

What does it all Mean?

GW Observations of compact binary inspirals will provide unparalleled information about fundamental physics. It is our responsibility to leverage this information to learn about physics:

Are the Binstein equations correct in the late inspiral/strong-field?

Doveryai, no proveryai

What does it all Mean?

GW Observations of compact binary inspirals will provide unparalleled information about fundamental physics. It is our responsibility to leverage this information to learn about physics:

Are the Binstein equations correct in the late inspiral/strong-field?

Are black holes described by the Kerr metric?

Doveryai, no proveryai

What does it all Mean?

GW Observations of compact binary inspirals will provide unparalleled information about fundamental physics. It is our responsibility to leverage this information to learn about physics:

Are the Binstein equations correct in the late inspiral/strong-field?

Are black holes described by the Kerr metric?

Do GWs have only two massless polarizations?

Doveryai, no proveryai

What does it all Mean?

GW Observations of compact binary inspirals will provide unparalleled information about fundamental physics. It is our responsibility to leverage this information to learn about physics:

Are the Binstein equations correct in the late inspiral/strong-field?

Are black holes described by the Kerr metric?

Do GWs have only two massless polarizations?

And all of this will allow us to heavily constrain modified theories to unparalleled levels.

Doveryai, no proveryai

We can't solve problems by using the same kind of thinking we used when we created them...Common sense is a collection of prejudices...

We can't solve problems by using the same kind of thinking we used when we created them...Common sense is a collection of prejudices...

- Albert Binstein

Bayes Factors

Single ppE template search β_{-3}

High-Order PN Đffects

Alt Grav NS-NS injection with $\beta_{-3} \neq 0 \neq \beta_{-2}$ single pp® template search β_{-3}

Fundamental Bias and Deviations Non-GR Signal/GR Templates, SNR = 20

Non GR injection, extracted with GR templates (blue) and ppE templates (red). GR template extraction is "wrong" by much more than the systematic (statistical) error. "Fundamental Bias"

2-Parameter pp® ®ffectiveness

Example of Non-Generic Tests

Example of Non-Generic Tests

Example of Non-Generic Tests

Đxample of Non-Generic Tests

For hi-M sys, bound goes as sqrt(L) because the noise goes as l/L.

For lo-M sys, low-f noise has little effect because signal dominated by WD confusion noise.

Changes in the arm length (classic LISA) affect the low-f and bucket noise spectrum.

