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Verify and only then Trust
Unconstrained GR modifications can alter astrophysical 

inferences (fundamental bias).

Modified theories can: 
i) Change GW amplitude -> error in GW DL and inc. angle. 
ii) Change GW phase -> error in GW Mchirp, mass ratio, EOS.
iii) Change ISCO -> error in  EM spin measurement. 

Cornish, Sampson, Yunes & Pretorius, 2011
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Road Map

I. ppE Theory

II. ppE Implementation

What I will leave out
Data analysis [Veitch]. 
Detailed waveform modeling within GR [Pan]
Non-Integrable orbits, Chaos, Poincare Islands
Cosmology. 
Quasi-normal ringdown and merger tests.
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Test Classification

Non-Generic Tests

• Pick a theory and test it. 
Eg. Brans-Dicke Theory.

•Problem: what theory do 
you pick? Do we have to 
consider all possibilities? 

Will, PRD 50, 1994,
Will, PRD 57, 1998,
Scharre & Will, PRD 65, 2002,
Will & Yunes, CQG 21, 2004,
Berti, et al PRD 71, 2005,
Stavridis & Will, CQG 28, 2009, 
Arun & Will, CQG 26, 2009, 
Yunes, Pretorius & Spergel, PRD 81, ‘10,
Mirshekari, Yunes & Will, PRD 85, ‘12.
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Test Classification

Non-Generic Tests Generic Tests

• Pick a theory and test it. 
Eg. Brans-Dicke Theory.

•Problem: what theory do 
you pick? Do we have to 
consider all possibilities? 

•Develop a “meta”-model 
(e.g. ppN) but for GWs: ppE

•Search for model-
independent GR deviations.

Yunes & Pretorius, PRD 80, ‘09,
Yunes & Hughes, PRD 82, ‘10,
Yagi, Stein, Yunes and Tanaka ‘11, 
Cornish, Sampson, Yunes & Pretorius, ‘11,
del Pozzo, et al, PRD 83, ’11
Li, et al, ’12, 
Arun, CQG ’12
Chatziioannou, Yunes & Cornish, ’12,

Will, PRD 50, 1994,
Will, PRD 57, 1998,
Scharre & Will, PRD 65, 2002,
Will & Yunes, CQG 21, 2004,
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Stavridis & Will, CQG 28, 2009, 
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Theoretical ppE Construction

Yunes & Pretorius, PRD 2009
Mirshekari, Yunes & Will, PRD 2012
Chatziioannou, Yunes & Cornish, PRD 2012

0. (Consider comparable-mass, non-spinning compact inspirals.)

I. Parametrically deform the Hamiltonian.

II. Parametrically deform the RR force.

III. Deform waveform generation.

IV. Parametrically deform g propagation.

h̃ = h̃GR (1 + αfa) eiβfb

Result: To leading PN order and leading GR deformation

A = AGR + δA

h = F+h+ + F×h× + Fshs + . . .

δAH,RR = ᾱH,RR vāH,RR

E2
g = p2gc

4 + α̃ pãg
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ppE Recovery of Theories

Siemens & Yunes, LRR ’13

h̃ = h̃GR

�
1 + αppE (πMf)appE/3

�
eiβppE(πMf)bppE/3
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II. ppE Implementation
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Confusion II: Noise Environment -> different b for different sources

Yunes & Miller & Thornburg, 2011, Yunes, Kocsis & Loeb, 2011, Kocsis, Yunes & Loeb, 2011. 

Confusion III: Mismodeling -> Only a problem for sys with large M
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Constraining GR Deviations

h̃ = h̃GR (1 + αfa) eiβfb

GR Signal/ppE Templates, 3-sigma constraints, SNR = 20

Yunes & Hughes, 2010,
Cornish, Sampson, Yunes & Pretorius, 2011
Li, et al, 2011.

Text
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How do Systematics Affect the ppE Implementation?
We’ll see... 

Yagi , Yunes & Cornish, 2012.
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unparalleled information about fundamental physics. It is our 

responsibility to leverage this information to learn about physics:

Do GWs have only two massless 
polarizations?

Doveryai, no proveryai

And all of this will allow us to 
heavily constrain modified 

theories to unparalleled levels.
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We can't solve problems by using the same kind of thinking we used 
when we created them...Common sense is a collection of prejudices...

- Albert Einstein
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Bayes Factors
Single ppE template search β−3

Sampson, Cornish & Yunes, 2012
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High-Order PN Effects
Alt Grav NS-NS injection with 

single ppE template search
β−3 �= 0 �= β−2

β−3

Sampson, Cornish & Yunes, 2012
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Fundamental Bias and Deviations

Non GR injection, extracted with GR templates (blue) and ppE 
templates (red). GR template extraction is “wrong” by much more 

than the systematic (statistical) error. “Fundamental Bias” 

Non-GR Signal/GR Templates, SNR = 20
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FIG. 14: The scaling of the parameter estimation error in
the ppE parameter β for an aLIGO simulation with ppE pa-
rameters (a,α, b,β) = (0, 0,−1.25, 0.1). The parameter errors
follow the usual 1/SNR scaling.
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FIG. 15: The log Bayes factors and (1 − FF) plotted as a
function of β for a ppE injection with parameters (a,α, b,β) =
(0, 0,−1.25,β). The predicted link between the fitting factor
and Bayes factor is clearly apparent.

the log Bayes factor is equal to

logB = χ2
min/2 +∆ logO

= (1− FF2)
SNR2

2
+∆ logO . (25)

Thus, up to the difference in the log Occam factors,
∆ logO, the log Bayes factor should scale as 1−FF when
FF ∼ 1. This link is confirmed in Figure 15.

E. Parameter Biases

If we assume that nature is described by GR, but in
truth another theory is correct, this will result in the
recovery of the wrong parameters for the systems we are
studying. For instance, when looking at a signal that
has non-zero ppE phase parameters, a search using GR
templates will return the incorrect mass parameters, as
illustrated below.
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FIG. 16: Histograms showing the recovered log total mass
for GR and ppE searches on ppE signals. As the source gets
further from GR, the value for total mass recovered by the
GR search moves away from the actual value.

Perhaps the most interesting point to be made with
this study is that the GR templates return values of the
total mass that are completely outside the error range
of the (correct) parameters returned by the ppE search,
even before the signal is clearly discernible from GR. We
refer to this parameter biasing as ‘stealth bias’, as it is
not an effect that would be easy to detect, even if one
were looking for it.

This ‘stealth bias’ is also apparent when the ppE α
parameter is non-zero. As one would expect, when a GR
template is used to search on a ppE signal that has non-
zero amplitude corrections, the parameter that is most
affected is the luminosity distance. We again see the bias
of the recovered parameter becoming more apparent as
the signal differs more from GR. In this study, because
we held the injected luminosity distance constant instead
of the injected SNR, the uncertainty in the recovered lu-
minosity distance changes considerably between the dif-
ferent systems. In both cases shown, however, the re-
covered posterior distribution from the search using GR
templates has zero weight at the correct value of lumi-
nosity distance, even though the Bayes factor does not
favor the ppE model over GR.

V. CONCLUSION

The two main results of this study are that the ppE
waveforms can constrain higher order deviations from GR
(terms involving higher powers of the orbital velocity)
much more tightly than pulsar observations, and that
the parameters recovered from using GR templates to
recover the signals from an alternative theory of gravity
can be significantly biased, even in cases where it is not
obvious that GR is not the correct theory of gravity. We
also see that the detection efficiency of GR templates can
be seriously compromised if they are used to characterize
data that is not described by GR.
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FIG. 17: Histograms showing the recovered values for lumi-
nosity distance from GR and ppE searches on a LISA binary
at redshift z = 7. Both signals have a = 0.5, and were in-
jected with a luminosity distance of 70.5 Gpc. The top plot
has α = 3.0 and the bottom has α = 2.5. As the Bayes factor
favors the ppE model more strongly, the bias in the recov-
ered luminosity distance from the GR search becomes more
pronounced.

The current study makes several simplifying assump-
tions about the waveforms: we consider only the inspi-
ral stage for non-spinning black holes on circular orbits,
and include just the leading order ppE corrections to the
waveforms. In future work we plan to include a marginal-
ization over these higher order corrections. Including this
marginalization will be more realistic, as the ppE for-
malism allows for many higher order corrections to the
waveform. Marginalizing over the higher order terms will
weaken the bounds on the leading order ppE parame-
ters, though probably not by that much since they are
sub-dominant terms.

Another subject that we will examine in the future
is the affect on our analysis of multiple detections. Si-
multaneously characterizing several systems with differ-
ent mass ratios should allow us to constrain all six ppE
parameters and not just the four we used in this study.
Looking at several systems simultaneously should also al-
low us to detect deviations from GR that are smaller than

those we could confidently infer with a single detection,
as the evidence for the ppE hypothesis will accumulate
with the additional data.

We also plan to perform a study similar to that done
by Arun et al. [24–26], in which the exponents ai, bi are
fixed at the values found in the PN expansion of GR, and
compare their Fisher matrix based bounds to those from
Bayesian inference.

Finally, we will look at LISA observations of galactic
white-dwarf binaries to see if the brighter systems, which
may have SNRs in the hundreds, may allow us to beat
the pulsar bounds across the entire ppE parameter space.
The brightest white-dwarf systems will have u ∼ 10−8 →
10−7 (for comparison the ‘golden’ double pulsar system,
PSR J0737-3039A has u = 3.94× 10−9), and these small
values for u make the ppE effects, which scale as ua and
ub, much larger than for black hole inspirals when a, b <
0.

The chance to test the validity of Einstein’s theory
of gravity is one of the most exciting opportunities that
gravitational wave astronomy will afford to the scientific
community. Without the appropriate tools, however, our
ability to perform these tests is sharply curtailed. This
analysis has shown that the ppE template family could
be an effective means of detecting and characterizing de-
viations from GR, and also that assuming that our GR
waveforms are correct could lead to lessened detection
efficiency and biased parameter estimates if gravity is
described by and alternative theory. We have identified
several areas of future investigation, and will continue to
study this area in depth.
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Changes in the arm length 
(classic LISA) affect the low-f 
and bucket noise spectrum. 

For hi-M sys, bound goes 
as sqrt(L) because the 
noise goes as 1/L. 

For lo-M sys, low-f noise 
has little effect because 
signal dominated by WD 
confusion noise. 
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