Modeling Gravitational Waves from Compact Binary Systems

Alessandra Buonanno

Maryland Center for Fundamental Physics & Joint Space-Science Institute Department of Physics, University of Maryland

Accumulation of signal-to-noise ratio in binary signals

Initial LIGO!

[Pan, AB, Pretorius & NASA-Goddard 07]

Chirps, Mergers and Explosions, KITP, September 2012

Chirps, Mergers and Explosions, KITP, September 2012

Inspiral: number of GW cycles predicted by PN theory

$$M = (1.4 + 1.4) M_{\odot}$$

 $f_{\rm in} = 40$ Hz; $f_{\rm fin} = 1570$ Hz $\chi = |{f S}|/m^2$

	Number of cycles	Number of <i>useful</i> cycles:
Newtonian:	16034	247.8
1PN:	+441	+24.0
1.5PN	-211	-20.0
Spin-orbit:	$+65.7\chi_1+65.7\chi_2$	$6.2\chi_1+6.2\chi_2$
2PN	+9.9	+1.5
2.5PN	$-11.7 + 9.2\chi_1 + 9.2\chi_2$	$-2.3 + 0.8\chi_1 + 0.8\chi_2$
3PN:	+2.6	+0.6
3.5PN:	-0.9	-0.2

Inspiral: number of GW cycles predicted by PN theory

$$M=(15+15)M_{\odot}$$

 $f_{
m in}=40$ Hz; $f_{
m fin}=147$ Hz $\chi=|{f S}|/m^2$

	Number of cycles	Number of <i>useful</i> cycles:
Newtonian:	302	10.7
1PN:	+39	+4.0
1.5PN	-37	-6.2
Spin-orbit:	$+11.7\chi_1+11.7\chi_2$	$1.9\chi_1+1.9\chi_2$
2PN	+3.3	+0.8
Spin-spin:	$-1.7\chi_1\chi_2$	$-0.4\chi_1\chi_2$
2.5PN	$-6.2 + 3.6 \chi_1 + 3.6 \chi_2$	$-2.3 \ +0.8\chi_1+0.8\chi_2$
3PN:	+2	+1.2
3.5PN:	-0.8	-0.5

Closeness of non-spinning PN approximants

For detection, PN-approximants are "the same" for $M \lesssim 12 M_{\odot}$

[AB, Iyer, Ochsner, Pan & Sathyaprakash 09]

Biases in binary parameters

EOB inspiral-plunge waveform

EOB inspiral-merger-ringdown waveforms

Inspiral-merger-ringdown templates

Modeling analytically the inspiral, merger and ringdown of black-hole binary systems

Simplicity and universality of merger signal over mass (and spin) range

Comparison between all techniques: periastron advance

[Le Tiec, Mroué, Barack, AB, Pfeiffer, Sago & Taracchini 11]

• In 1915 Einstein derived the lowest order GR angular advance per orbit:

 $\Delta \Phi = \frac{6\pi G M_{\odot}}{c^2 a (1 - e^2)}$

- Very accurate NR simulations
- Predictions from PN theory
- Predictions from (uncalibrated) EOB
- Predictions from gravitational self-force (GSF)

[Barack & Sago 09-11; Barack, Damour & Sago 10]

34 orbits!

Comparison between all techniques: binding energy

- Predictions from PN theory
- Predictions from (uncalibrated) EOB
- Predictions from GSF

[Le Tiec, Barausse & AB 11]

 $\hat{E} = E_{\rm Schw} + \nu E_{\rm GSF} + \mathcal{O}(\nu^2)$ $\hat{J} = J_{\rm Schw} + \nu J_{\rm GSF} + \mathcal{O}(\nu^2)$

 \Rightarrow complete EOB potentials A and B!

[Barausse, AB & Le Tiec 11]

• NR result

```
[Damour, Nagar, Pollney & Reisswig 11]
```


Similar results for $m_2/m_1 = 2, 3$

Nonspinning IMR Model

Effectualness

09/06/12

Faithfulness

09/06/12

SEOBNRv1

Extreme anti-aligned spins

Rattle and Shine @ KITP

Nonspinning IMR modes

Rattle and Shine @ KITP

QNM excitation

09/06/12

Rattle and Shine @ KITP

7