Measuring tidal effects Jocelyn Read KITP Chirps I 2 Program Sep 5 2012

I mostly just pulled up figures in response to discussion during my talk. This is a collection of those figures with references.

Relative sizes of 3.5PN and Newtonian tidal terms.

Figure from Hinderer et al 2010 <u>http://arxiv.org/abs/</u> 0911.3535

Sensitivity of parameters to low-density variation

Measurement in equal-mass systems using signal below 450Hz marginalized over spin

Figure from Hinderer et al 2010 <u>http://arxiv.org/abs/</u> 0911.3535

Measurement with chirp parameters using signal below 450Hz marginalized over spin

Figure from Hinderer et al 2010 <u>http://arxiv.org/abs/</u> 0911.3535

		Advan	ced LIG	0	
$M~(M_{\odot})$	m_2/m_1	$\Delta \mathcal{M}/\mathcal{M}$	$\Delta \eta/\eta$	$\Delta \tilde{\lambda} (10^{36} \text{ g cm}^2 \text{ s}^2)$	ho
2.0	1.0	0.000 28	0.073	8.4	27
2.8	1.0	0.00037	0.055	19.3	35
3.4	1.0	0.00046	0.047	31.3	41
2.0	0.7	0.000 26	0.058	8.2	26
2.8	0.7	0.000 27	0.058	18.9	35
3.4	0.7	0.000 28	0.055	30.5	41
2.8	0.5	0.000 37	0.06	17.8	33
		Einstein	n Telesco	ppe	
$M (M_{\odot})$	m_2/m_1	$\Delta \mathcal{M}/\mathcal{M}$	$\Delta \eta/\eta$	$\Delta \tilde{\lambda} (10^{36} \text{ g cm}^2 \text{ s}^2)$	ho
2.0	1.0	0.000 015	0.0058	0.70	354
2.8	1.0	0.000 021	0.0043	1.60	469
3.4	1.0	0.000 025	0.0038	2.58	552
2.0	0.7	0.000 015	0.0058	0.68	349
2.8	0.7	0.000 021	0.0045	1.56	462
3.4	0.7	0.000 025	0.0038	2.52	543
2.8	0.5	0.000 020	0.0048	1.46	442

Measurement with chirp parameters using signal below 450Hz marginalized over spin Table from Hinderer et al 2010 http://arxiv.org/abs/ 0911.3535

Damour, Nagar, Villain result <u>http://arxiv.org/abs/1203.4352</u> similar estimate method, extended up to contact frequency (justified from EOB+Tidal/Numerical agreements)

	tidal parameters for different EOS				relative error at SNR=I (multiply by I/SNR)						
-	EOS	β	$R \; [\mathrm{km}]$	С	$G\mu_2[{ m km}^5]$	$\hat{\sigma}_{\ln\mathcal{M}}$	$\hat{\sigma}_{\ln u}$	$\hat{\sigma}_{G\mu_2} \ [\mathrm{km}^2]$	$\hat{\sigma}_{\ln G\mu_2}$	$\hat{\sigma}_{G\mu_2}^{450 { m Hz}} \ [{ m km}^5]$	$\hat{\sigma}^{450\mathrm{Hz}}_{\ln G\mu_2}$
-	GNH3	$ \beta < +\infty$	14.19	0.1457	32641.6	0.00415853	3.18959	186 292	5.70720	1 476 380	45.23
		$ \beta < 8.5$	14.19	0.1457	32641.6	0.00405962	3.09906	$182\ 612$	5.59447	$1 \ 236 \ 580$	37.8835
		$ \beta < 0.2$	14.19	0.1457	32641.6	0.000447397	0.122751	165 714	5.07679	874 001	26.7757
		$\beta = 0$	14.19	0.1457	32641.6	0.000450135	0.117804	165 652	5.07487	873 019	26.7456
	BSK21	$ \beta < +\infty$	12.57	0.1645	19424.9	0.003946	2.98317	158 080	8.13801	$1 \ 539 \ 610$	79.2596
		$ \beta < 8.5$	12.57	0.1645	19424.9	0.0038749	2.91796	155 190	7.98922	$1 \ 284 \ 240$	66.1132
		$ \beta < 0.2$	12.57	0.1645	19424.9	0.000434397	0.115657	133 108	6.85246	876 337	45.1141
		$\beta = 0$	12.57	0.1645	19424.9	0.000436901	0.110806	$133 \ 046$	6.84928	875 290	45.0603
	BSK20	$ \beta < +\infty$	11.75	0.1760	12054.4	0.00384331	2.88426	$148 \ 380$	12.3092	$1 \ 575 \ 360$	130.687
		$ \beta < 8.5$	11.75	0.1760	12054.4	0.00378349	2.82927	145 750	12.0910	1 311 380	108.788
		$ \beta < 0.2$	11.75	0.1760	12054.4	0.000428026	0.112247	118 815	9.85656	877 640	72.8064
_		$\beta = 0$	11.75	0.1760	12054.4	0.000430414	0.107437	118 751	9.85125	876 558	72.7166
	SLy	$ \beta < +\infty$	11.74	0.1766	11244.8	0.00383898	2.8801	148 911	13.2426	1 579 310	140.448
differe	nt 🦾	$ \beta < 8.5$	11.74	0.1760	11244.8	0.00377961	2.82552	$146\ 254$	13.0064	1 314 390	116.888
oin prie	ors 🔿	$\bullet \beta < 0.2$	11.74	0.1760	11244.8	0.000427755	0.112104	118 271	10.5179	877 784	78.0612
	X	$\beta = 0$	11.74	0.1760	11244.8	0.000430139	0.107295	118 206	10.5121	876 697	77.9646
	APR	$ \beta < +\infty$	11.37	0.1819	9709.13	0.00379747	2.84028	142 857	14.7136	1 586 810	163.434
		$ \beta < 8.5$	11.37	0.1819	9709.13	0.00374226	2.78947	$140 \ 408$	14.4615	$1 \ 320 \ 100$	135.964
		$ \beta < 0.2$	11.37	0.1819	9709.13	0.000425161	0.110728	$112 \ 643$	11.6018	878055	90.436
_		$\beta = 0$	11.37	0.1819	9709.13	0.000427498	0.105935	112 580	11.5953	876 961	90.3233

Frequencies contributing to measurement

Damour Nagar Villain <u>http://</u> <u>arxiv.org/abs/</u> <u>1203.4352</u>

Spectra of 100 MPc D_{eff} 1.35-1.35 M_{sun} mergers

Spectra of 100 MPc D_{eff} 1.35-1.35 M_{sun} mergers

Spectra of 100 MPc D_{eff} 1.35-1.35 M_{sun} mergers

SNR of differences between waveforms

Advanced LIGO high-power detuned

EOS	Η	HB	В
2H	2.162 ± 0.030	2.210 ± 0.036	2.234 ± 0.035
Η	_	0.896 ± 0.099	1.0452 ± 0.087
HB	_	_	0.580 ± 0.168

Einstein Telescope configuration D

EOS	Η	HB	В
$2\mathrm{H}$	20.352 ± 0.314	20.739 ± 0.369	20.890 ± 0.360
Η	_	7.740 ± 0.914	9.130 ± 0.866
HB	_	_	5.095 ± 1.490

Hybrid waveform model estimates

$$\langle \delta R \rangle \Big|_{R_{avg}} \simeq \frac{R_1 - R_2}{\langle h(R_1) - h(R_2) \big| h(R_1) - h(R_2) \rangle^{1/2}}$$

$\langle \delta R \rangle$, R is radius of isolated neutron star						
	Broadband AdLIGO	ET-D				
R = 10.8	± 0.9 km	± 0.09 km				
R = 11.9	± 0.8 km	± 0.10 km				

Radius can be constrained with a strong Advanced LIGO signal (in high-power detuned configuration) based on numerical waveform alone.

Systematics from different numerical simulations with same EOS $\sim 0.1\,\text{km}$ Other sources: parameterization choice, discrete parameter sampling

