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plate, halting the accumulation of signal-to-noise ratio.
The phase contributions to binary neutron stars of various
masses from a range of realistic tidal deformabilities are
plotted in Fig. 4.
The post-Newtonian formalism itself is sensitive to

high-order corrections at the frequencies at which the tidal
effect becomes significant; as reference, we show in Fig. 4
the phase difference between the 3.0PN and 3.5PN expan-
sions, as well as that from varying the form of the post-
Newtonian Taylor expansion from T4 to T1.4 An accurate
knowledge of the underlying point-particle dynamics
will be important to resolve the effects of tidal
deformation on the gravitational wave phase evolution at
these frequencies.
The half-cycle or more contribution to the gravitational

wave phase at relatively low frequencies suggests that this
effect could be measurable. Flanagan and Hinderer [11]
first calculated the measurability for frequencies below
400 Hz, where the approximations leading to the tidal
phase correction are well justified. We extend the same
computation of measurability to a range of masses and
mass ratios. We take noise curves from the projected NS-
NS optimized Advanced LIGO configuration [45], as well
as a proposed noise spectrum of the Einstein Telescope
[46]. These noise curves are representative of the antici-
pated sensitivities of the two detectors. Our results do not
change significantly for alternate configurations which
have similar sensitivities in the frequency range of interest.
We also extend the computation to a slightly higher

cutoff frequency. As estimated in the Appendix, our cal-
culation should still be fairly robust at 450 Hz, as the
contributions to the phase evolution from various higher-
order effects are Oð10%Þ of the leading-order tidal contri-
bution. The uncertainty in the phase contribution from a
given EOS is therefore significantly smaller than the order
of magnitude range of phase contributions over the full set
of realistic EOS.
The rms uncertainty !~! in the measurement of ~! is

computed using the standard Fisher matrix formalism
[47]. Assuming a strong signal h and Gaussian detector
noise, the signal parameters "i have probability distribu-
tion pð"iÞ / expð#ð1=2Þ"ij#"

i#"jÞ, where #"i ¼ "i # "̂i

is the difference between the parameters and their best-fit
values "̂i and "ij ¼ ð@h=@"i; @h=@"jÞ is the Fisher infor-
mation matrix. The parentheses denote the inner product
defined in [47]. The rms measurement error in "i is given
by a diagonal element of the inverse Fisher, or covariance,

matrix: !"i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"#1Þii

p
.

Using the stationary phase approximation and neglect-
ing post-Newtonian corrections to the amplitude, the
Fourier transform of the waveform for spinning point
masses is given by ~hðfÞ ¼ Af#7=6 expði#Þ, where the

FIG. 4 (color online). The reduction in accumulated gravita-
tional wave phase due to tidal effects, $3:5;PPðfGWÞ #
$3:5;!ðfGWÞ, is plotted with thick lines as a function of gravita-
tional wave frequency, for a range of ! appropriate for realistic
neutron-star EOS and the masses considered. The 3.5 post-
Newtonian TaylorT4 PN specification is used as the point-
particle reference for the phase calculations. For reference, the
difference in accumulated phase between 3.0 and 3.5 post-
Newtonian orders of T4 (thin dashed line), and the difference
between 3.5 post-Newtonian T4 and 3.5 post-Newtonian T1 (thin
dotted line) are also shown. Phase accumulations are integrated
from a starting frequency of 10 Hz.

4For an explanation of the differences between T4 and T1, see
[43,44].
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of a black hole (m=R ¼ 0:5) regardless of the EOS-
dependent quantity y [17,18].
Normal matter EOS behave approximately as polytropes

for large compactness. However, for smaller compactness,
the softer crust becomes a greater fraction of the star, so the
star is more centrally condensed and k2 smaller. For strange
quark matter, the EOS is extremely stiff near the minimum
density, and the star behaves approximately as an n ¼ 0
polytrope for small compactness. As the central density
and compactness increase, the softer part of the EOS has
a larger effect, and the star becomes more centrally
condensed.
The parameter that is directly measurable by gravita-

tional wave observations of a binary neutron-star inspiral is
proportional to the tidal deformability !, which is shown
for each candidate EOS in Fig. 2. The values of ! for the
candidate EOS show a much wider range of behaviors than
for k2 because ! is proportional to k2R

5, and the candidate
EOS produce a wide range of radii (9.4–15.5 km for a
1:4M" star for normal EOS and 8.9–10.9 km for the SQM
EOS). See Table I.
For normal matter, ! becomes large for stars near the

minimum mass configuration at roughly 0:1M" because
they have a large radius. For masses in the expected mass
range for binary inspirals, there are several differences
between EOS with only npe" matter and those with con-
densates. EOS with condensates have, on average, a larger
!, primarily because they have, on average, larger radii.
The quark hybrid EOS ALF1 with a small radius (9.9 km
for a 1:4M" star) and the nuclear matter only EOSs MS1
andMS2 with large radii (14.9 and 14.5 km, respectively, at
1:4M") are exceptions to this trend.

TABLE I. Properties of a 1:4M" neutron star for the 18 EOS
discussed in the text.

EOS R (km) m=R k2 !ð1036 g cm2 s2Þ
SLY 11.74 0.176 0.0763 1.70
AP1 9.36 0.221 0.0512 0.368
AP3 12.09 0.171 0.0858 2.22
FPS 10.85 0.191 0.0663 1.00
MPA1 12.47 0.166 0.0924 2.79
MS1 14.92 0.139 0.110 8.15
MS2 13.71 0.151 0.0883 4.28

PS 15.47 0.134 0.104 9.19
BGN1H1 12.90 0.160 0.0868 3.10
GNH3 14.20 0.146 0.0867 5.01
H1 12.86 0.161 0.0738 2.59
H4 13.76 0.150 0.104 5.13
PCL2 11.76 0.176 0.0577 1.30
ALF1 9.90 0.209 0.0541 0.513
ALF2 13.19 0.157 0.107 4.28

SQM1 8.86 0.233 0.098 0.536
SQM2 10.03 0.206 0.136 1.38
SQM3 10.87 0.190 0.166 2.52
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FIG. 2. Tidal deformability ! of a single neutron star as a
function of neutron-star mass for a range of realistic EOS. The
top figure shows EOS that only include npe" matter; the middle
figure shows EOS that also incorporate #=hyperon=
quark matter; the bottom figure shows strange quark matter
EOS. The dashed lines between the various shaded regions
represent the expected uncertainties in measuring ! for an
equal-mass binary inspiral at a distance of D ¼ 100 Mpc as it
passes through the gravitational wave frequency range 10–
450 Hz. Observations with Advanced LIGO will be sensitive
to ! in the unshaded region, while the Einstein Telescope will be
able to measure ! in the unshaded and light shaded regions. See
text.
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point-mass contribution to the phase! is given to 3.5 post-
Newtonian order in Ref. [48]. The tidal term

!!tidal ¼ " 117~"x5=2

8#M5
(22)

obtained from Eq. (A5) adds linearly to this, yielding a
phase model with 7 parameters ðtc;$c;M;#;%;&; ~"Þ,
where % and & are spin parameters. We incorporate the
maximum spin constraint for the NSs by assuming a
Gaussian prior for % and & as in [47]. The uncertainties
computed will depend on the choice of point-particle phase
evolution, but we assume this to be exactly the 3.5PN form
for the current analysis.

The rms measurement uncertainty of ~", along with the
uncertainties in chirp mass M and symmetric mass ratio
#, are given in Table II and plotted in Figs. 2 and 3, from a
single-detector observation of a binary at 100Mpc distance
with amplitude averaged over inclinations and sky posi-
tions. If the best-fit ~" is zero, this represents a 1-& upper
bound on the physical ~". A signal with best-fit ~" % "~"
would allow a measurement rather than a constraint of ~",
with 1-& uncertainty of "~".

We obtain the following approximate formula for the
rms measurement uncertainty "~", which is accurate to
better than 4% for the range of masses 0:1M& ' m1,m2 '
3:0M& and cutoff frequencies 400 Hz ' fend ' 500 Hz:

"~" ( '
!
M

M&

"
2:5
!
m2

m1

"
0:1
!
fend
Hz

""2:2
!

D

100Mpc

"
; (23)

where ' ¼ 1:0) 1042 g cm2 s2 for a single Advanced
LIGO detector and ' ¼ 8:4) 1040 g cm2 s2 for a single
Einstein Telescope detector.
Our results show that the measurability of tidal effects

decreases steeply with the total mass of the binary.
Estimates of the measurement uncertainty for an equal-
mass binary inspiral in a single detector with projected
sensitivities of Advanced LIGO and the Einstein
Telescope, at a volume-averaged distance of 100 Mpc
and using only the portion of the signal between 10–
450 Hz, are shown in Fig. 2, together with the values of
" predicted by various EOS models. Measurability is less
sensitive to mass ratio, as seen in Fig. 3. Comparing the
magnitude of the resulting upper bounds on " with the
expected range for realistic EOS, we find that the predicted
" are greatest and the measurement uncertainty "" is
smallest for neutron stars at the low end of the expected
mass range for NS-NS inspirals of (1M&–1:7M&) [49].
In a single Advanced LIGO detector, only extremely

stiff EOS could be constrained with a typical 100 Mpc
observation. However, a rare nearby event could allow
more interesting constraints, as the uncertainty scales as
the distance to the source. Rate estimates for detection of
binary neutron stars are often given in terms of a minimum
signal-to-noise (c ¼ 8; a recent estimate [50] is between 2
and 64 binary neutron-star detections per year for a single
Advanced LIGO interferometer with a volume-averaged
range of 187 Mpc. The rate of binaries with a volume-
averaged distance smaller than 100 Mpc translates to
roughly ð100=187Þ3 ’ 15% of this total detection rate,
but over multiple years of observation a rare event could
give measurements of ~"with uncertainties smaller than the
values in Table II (e.g. with half the tabled uncertainty at
1.9% of the total NS-NS rate).
Using information from a network of N detectors with

the same sensitivity decreases the measurement uncer-
tainty by approximately a factor of 1=

ffiffiffiffi
N

p
[51], giving

more reason for optimism. However, we should also note
that, in some ways, our estimates of uncertainty are already
too optimistic. First, "" only represents a 68% confidence
in the measurement; a 2"" error bar would give a more
reasonable 95% confidence. In addition, our Fisher matrix
estimates are likely to somewhat underestimate the mea-
surement uncertainty in real non-Gaussian noise.
In contrast to Advanced LIGO, an Einstein Telescope

detector with currently projected noise would be sensitive
to tidal effects for typical binaries, using only the signal
below 450 Hz at 100 Mpc. The tidal signal in this regime
would provide a clean signature of the neutron-star core
equation of state. However, an accurate understanding of
the underlying point-particle phase evolution is still im-
portant to confidently distinguish EOS effects.

TABLE II. The rms measurement error in various binary pa-
rameters (chirp mass M, symmetric mass ratio #, and weighted
average ~" of the tidal deformabilities) for a range of total mass
M and mass ratio m2=m1, together with the signal-to-noise ratio
(, using only the information in the portion of the inspiral signal
between 10 Hz ' f ' 450 Hz. The distance is set at 100 Mpc,
and the amplitude is averaged over sky position and relative
inclination.

Advanced LIGO
M ðM&Þ m2=m1 "M=M "#=# "~"ð1036 g cm2 s2Þ (

2.0 1.0 0.000 28 0.073 8.4 27
2.8 1.0 0.000 37 0.055 19.3 35
3.4 1.0 0.000 46 0.047 31.3 41
2.0 0.7 0.000 26 0.058 8.2 26
2.8 0.7 0.000 27 0.058 18.9 35
3.4 0.7 0.000 28 0.055 30.5 41
2.8 0.5 0.000 37 0.06 17.8 33

Einstein Telescope
M ðM&Þ m2=m1 "M=M "#=# "~"ð1036 g cm2 s2Þ (

2.0 1.0 0.000 015 0.0058 0.70 354
2.8 1.0 0.000 021 0.0043 1.60 469
3.4 1.0 0.000 025 0.0038 2.58 552
2.0 0.7 0.000 015 0.0058 0.68 349
2.8 0.7 0.000 021 0.0045 1.56 462
3.4 0.7 0.000 025 0.0038 2.52 543
2.8 0.5 0.000 020 0.0048 1.46 442
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TABLE II. Measurability of the tidal parameter Gµ2 for aM = 1.4M!+1.4M! neutron star binary obtained using the TaylorF2
frequency-domain approximant to the phase, truncated at 2.5PN fractional accuracy for the tidal part and at 2PN accuracy in
the point-mass part. From left to right the columns report: the name of the EOS; the value of the spin-orbit parameter and of
the prior on it; the radius of the star; its compactness; the value of the ! = 2 tidal parameter Gµ2; the SNR-normalized relative
errors on the chirp mass σ̂M/M and on the ν parameter σ̂ν/ν when cutting at bare contact frequency; the SNR-normalized
absolute error, σ̂Gµ2 , and relative error σ̂Gµ2/(Gµ2) on Gµ2. The last two columns refer to the absolute and relative errors on
Gµ2 that are obtained by taking as cut-off frequency the conservative value 450Hz.

EOS β R [km] C Gµ2 [km
5] σ̂lnM σ̂ln ν σ̂Gµ2 [km5] σ̂lnGµ2 σ̂450Hz

Gµ2
[km5] σ̂450Hz

lnGµ2

GNH3 |β| < +∞ 14.19 0.1457 32641.6 0.00415853 3.18959 186 292 5.70720 1 476 380 45.23

|β| < 8.5 14.19 0.1457 32641.6 0.00405962 3.09906 182 612 5.59447 1 236 580 37.8835

|β| < 0.2 14.19 0.1457 32641.6 0.000447397 0.122751 165 714 5.07679 874 001 26.7757

β = 0 14.19 0.1457 32641.6 0.000450135 0.117804 165 652 5.07487 873 019 26.7456

BSK21 |β| < +∞ 12.57 0.1645 19424.9 0.003946 2.98317 158 080 8.13801 1 539 610 79.2596

|β| < 8.5 12.57 0.1645 19424.9 0.0038749 2.91796 155 190 7.98922 1 284 240 66.1132

|β| < 0.2 12.57 0.1645 19424.9 0.000434397 0.115657 133 108 6.85246 876 337 45.1141

β = 0 12.57 0.1645 19424.9 0.000436901 0.110806 133 046 6.84928 875 290 45.0603

BSK20 |β| < +∞ 11.75 0.1760 12054.4 0.00384331 2.88426 148 380 12.3092 1 575 360 130.687

|β| < 8.5 11.75 0.1760 12054.4 0.00378349 2.82927 145 750 12.0910 1 311 380 108.788

|β| < 0.2 11.75 0.1760 12054.4 0.000428026 0.112247 118 815 9.85656 877 640 72.8064

β = 0 11.75 0.1760 12054.4 0.000430414 0.107437 118 751 9.85125 876 558 72.7166

SLy |β| < +∞ 11.74 0.1766 11244.8 0.00383898 2.8801 148 911 13.2426 1 579 310 140.448

|β| < 8.5 11.74 0.1760 11244.8 0.00377961 2.82552 146 254 13.0064 1 314 390 116.888

|β| < 0.2 11.74 0.1760 11244.8 0.000427755 0.112104 118 271 10.5179 877 784 78.0612

β = 0 11.74 0.1760 11244.8 0.000430139 0.107295 118 206 10.5121 876 697 77.9646

APR |β| < +∞ 11.37 0.1819 9709.13 0.00379747 2.84028 142 857 14.7136 1 586 810 163.434

|β| < 8.5 11.37 0.1819 9709.13 0.00374226 2.78947 140 408 14.4615 1 320 100 135.964

|β| < 0.2 11.37 0.1819 9709.13 0.000425161 0.110728 112 643 11.6018 878 055 90.436

β = 0 11.37 0.1819 9709.13 0.000427498 0.105935 112 580 11.5953 876 961 90.3233

FPS |β| < +∞ 10.85 0.1907 6604.17 0.00373437 2.77992 135 473 20.5133 1 602 010 242.575

|β| < 8.5 10.85 0.1907 6604.17 0.00368509 2.73448 133 267 20.1792 1 331 690 201.644

|β| < 0.2 10.85 0.1907 6604.17 0.000421197 0.108641 104 424 15.8118 878 605 133.038

β = 0 10.85 0.1907 6604.17 0.000423462 0.103871 104 362 15.8025 877 496 132.87

BSK19 |β| < +∞ 10.75 0.1924 6175.14 0.00372323 2.76928 134 005 21.7007 1 604 110 259.769

|β| < 8.5 10.75 0.1924 6175.14 0.00367495 2.72475 131 846 21.3511 1 333 300 215.914

|β| < 0.2 10.75 0.1924 6175.14 0.000420494 0.108273 102 998 16.6795 878 681 142.293

β = 0 10.75 0.1924 6175.14 0.000422746 0.103507 102 937 16.6696 877 570 142.113

For each EOS, the results are displayed along four
rows. On each row, the first four columns give: (i) infor-
mation about the treatment of the spin-orbit parameter
β; (ii) the value of the neutron star radius (in km); (iii)
the value of the compactness; (iv) the value of the tidal
parameter Gµ2. The following four columns give: (v)
the fractional, SNR normalized, error on the chirp mass
σ̂lnM ≡ σ̂M/M; (vi) the fractional SNR normalized, er-
ror on the symmetric mass ratio, σ̂ln ν ≡ σ̂ν/ν; (vii) the
absolute, SNR normalized error σ̂Gµ2 on Gµ2 (in [km5]);
and finally (viii) the fractional, SNR normalized error
σ̂lnGµ2 ≡ σ̂Gµ2/(Gµ2) on Gµ2. Concerning the treat-
ment of the spin-orbit parameter, the first row, labelled
with |β| < +∞ refers to a 6 × 6 Fisher matrix analysis

where β is included as a sixth unconstrained parameter.
The second row, |β| < 8.5, refers to a a 6× 6 Fisher ma-
trix analysis where β is constrained by adding a Gaussian
prior proportional to exp[−1/2(2β/8.5)2]. Similarly, the
third row corresponds to a more constraining prior pro-
portional to exp[−1/2(2β/0.2)2]. Finally, the fourth row
corresponds to a 5× 5 Fisher matrix analysis where β is
set to zero from the beginning without being fitted for,
which was used to obtain the data displayed in Fig. 4. As
already mentioned above, the results for the strong prior
|β| < 0.2 (3rd row) are nearly indistinguishable from the
results of the 5×5 Fisher matrix analysis (4th row). This
justifies our use of the 5×5 Fisher matrix results in Fig. 4
above. By contrast, we see that the results corresponding

Damour, Nagar, Villain result http://arxiv.org/abs/1203.4352
similar estimate method, extended up to contact frequency 

(justified from EOB+Tidal/Numerical agreements)
tidal parameters for different EOS

relative error at SNR=1 
(multiply by 1/SNR)

different 
spin priors
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FIG. 3. Integrands, per frequency octave, of the inte-
grals determining the measurability of M, ν, ρ (SNR) and
λT . While most of the SNR is gathered around frequencies
f̂ = f/(56.56 Hz) ∼ 1, the measurability of M and ν is con-
centrated towards lower frequencies (f̂ = f/f0 < 1), and that
of the tidal parameter λT gets its largest contribution from
the late inspiral up to the merger. The rightmost vertical line
indicates the merger frequency for C = 0.1645, while the left-
most vertical line marks 450 Hz for a 1.4M! + 1.4M! BNS
system.

logarithmic frequency axis of several relevant measura-
bility signals is illustrated in Fig. 3. Note in particular
how the integrands of I−10 (chirp mass) and I−6 (sym-
metric mass ratio) are peaked at frequencies below the
SNR integrand of I0. Physically, this corresponds to say-
ing that most of the useful cycles for the measurability of
M and ν come from the early inspiral. As the PN expan-
sion converges reasonably well for such low frequencies,
using a 2PN accurate phasing is guaranteed to be a rea-
sonably good approximation for the point-mass part of
the phase. This has been checked by Ref. [32] for the
measurement of M and ν, which found (see their Ta-
ble II) that using a 2PN accurate (instead of a 1.5PN
accurate, as in Ref. [31]) template led to only ∼ 10%
differences in the fractional uncertainties in ν and M.
We found, as expected, that the situation is even better
for the measurement of λT : namely, we found that the
fractional uncertainty on λT is changed (and actually im-
proved) when using a 2PN template for Ψ0, rather than
a 1.5PN one, only at the 5 × 10−3 level By contrast to
the cases of M and ν, the measurability of the tidal pa-
rameter λT is associated in the Fisher matrix to an in-
tegral of the type I+10 =

∫
d ln ffγ(f)v(f)10, which gets

its largest contribution from the late inspiral up to the
merger (see solid line in Fig. 3). More specifically, the in-
tegrand of I+10, i.e. ∝ fγ(f)f10/3 is equal to f2/Sn(f).
The ZERO DET high P advanced LIGO noise curve Sn(f)
happens to be a rather flat function of f between ∼ 50 Hz

and ∼ 800 Hz and then increases to reach a shot noise
behavior Sn(f) ∝ f2 at high frequencies. This implies
that the integrand of I+10, i.e. f2/Sn(f), roughly grows
like f2 between 50 Hz and 800 Hz, to then asymptote
towards a finite limit at high frequencies. The clear sep-
aration between, on the one hand, the two SNR curves
associated to M and ν (which are relatively close to each
other) and on the other hand the SNR curve associated to
λT also indicates (as we shall discuss below) that M and
ν are strongly correlated among themselves, while λT is
not so strongly correlated to M and ν. The figure also
displays two possible cut-off frequencies for the measure-
ments of the tidal signal: the conservative value 450 Hz
(dashed vertical line) used in Refs. [5, 9], f̂ = 7.956, or
the compactness–dependent contact frequency that we
shall use here, (πMf)contact = C3/2 (dash-dotted verti-
cal line, computed using EOS BSK21 with a model with
M = 1.4M" and C = 0.1645). Evidently, the use of the
late-inspiral cut-off frequency f̂contact calls for a formal-
ism able to describe the phasing up to the merger (here,
the EOB formalism and its accurate high PN expanded
representation discussed in the previous section).
In Eq. (53) we have included also a parameter β as-

sociated to the spin-orbit interaction and a parameter σ
associated to the spin-spin one [36]. These parameters
are equal to

β =
1

12

(
113X2

A + 75ν
)
L̂ · âA + (A ↔ B), (64)

σ =
ν

48

(
−247âA · âB + 721 L̂ · âA L̂ · âB

)
, (65)

where âA = SA/(GM2
A) is the dimensionless spin param-

eter of body A. Previous work [9, 31, 32] discussing data-
analysis including the spin parameters β and σ had incor-
porated Bayesian priors à la [31] constraining the mag-
nitudes of |β| and |σ| to be smaller than 8.5 and 5.0 re-
spectively, which are plausible theoretical upper limits on
them. However, such values are very conservative bounds
on β and σ in view of observed binary pulsar systems (as
already pointed out in Refs. [31, 36]). Indeed, recent
estimates of the event-rate for BNS GW observations
are mainly obtained from extrapolation of the currently
observed binary pulsar systems. All the known binary
pulsar systems have rather small observed spin parame-
ters. Considering the fastest spinning pulsar observed in
a BNS system, namely PSR J0737-3039A, whose spin pe-
riod is 23 ms [37], we concluded from the calculations of
moments of inertia by Bejger et al. [38] (who work with
the EOSs: BPAL12, APR, SLy, BGN2H1 and GNH3)
and by Morrison et al.[39] (who use FPS), that the ini-
tial dimensionless spin parameter â is between approxi-
matively 0.017 (for BPAL12) and 0.03 (for GNH3). This
leads to an initial range for the corresponding parame-
ter β of order |β| ∈ [0.11; 0.196], while the 2PN-level
spin-spin parameter σ is at most of the order |σ| ! 10−4.
Taking into account the slowing down of the spin until
the moment of merger, we estimated that β at the time
of the merger would be within the range [0.09; 0.17] so

= f / 55.56 Hz

450 Hz Contact
Frequencies 

contributing to 
measurement
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B. Measurability estimates

We wish to estimate our ability to measure some EOS
parameter, such as the radius of the neutron star R or
its tidal deformability Λ1/5, for a detected signal. This
is achieved by creating a one-parameter family of wave-
forms, h(p), where p is the EOS-dependent parameter of
interest (for our purposes, either R or Λ1/5) and compar-
ing the detected signal to the members of this family in
order to determine the value of the parameter that pro-
duces the best match. Such comparisons are based on a
noise-weighted inner product. This inner product of two
waveforms h1 and h2, for a detector with noise spectrum
Sh(f), is defined by

�h1 | h2� ≡ 4Re

� ∞

0

h̃1(f)h̃∗
2(f)

Sh(f)
df. (13)

In terms of this inner product, the characteristic SNR of
a given waveform h is ρ ≡ �h | h�1/2. If the detected
signal is s then the most likely value for the parameter
p is the value for which �s | h(p)�/�h(p) | h(p)�1/2 is a
maximum. However, the measured value of p will differ
from the true value of p because of two effects: The first
effect is that the measured value of p will be shifted away
from its true value because of the presence of random
detector noise; we describe this random error by the root-
mean-squared value of the parameter shift, δprand. The
second effect arises if there is a fundamental difference
between the true gravitational waveform and the nearest
member of the family of waveforms that are being used;
such a systematic error is given by δpsyst. The random
error depends on the amplitude of the signal relative to
the level of detector noise, so it scales inversely with the
signal’s SNR. The systematic error is SNR-independent.

Two waveforms, h(p1) and h(p2) are said to be distin-
guishable if the quantity

ρdiff ≡
�
�h(p1)− h(p2) | h(p1)− h(p2)� (14)

has a value ρdiff � 1 [17, 66, 67]. We first wish to
determine whether the waveforms for the various EOS
are distinguishable. The value of ρdiff depends on the
SNR of the signal, so we compute the quantity ρdiff ×
(Deff/100Mpc) where Deff is the effective distance of a
binary system, which equals the true distance of a sys-
tem if it is optimally oriented (face-on) and optimally
located (directly above or below the detector) and is
greater than the true distance otherwise; a canonical
value of Deff = 100Mpc is taken in this paper. Both po-
larizations of the numerical waveform are extracted; the
relevant quantities of the signal can be calculated with
either. In this paper, plots show the average amplitude
of the two polarizations. We choose a single polarization
(after phase shift) to represent signal-to-noise quantities;
differences in SNR from choosing the other polarization
are < 1%.

The results are presented in Table VI for the inspiral-
only waveforms. EOS 2H, having the largest difference

TABLE VI: SNR of differences between waveforms at 100
Mpc, averaged over resolved waveforms for each EOS. The
standard deviation of the set of resulting estimates is also
provided.

Advanced LIGO high-power detuned

EOS H HB B

2H 2.162± 0.030 2.210± 0.036 2.234 ± 0.035

H - 0.896± 0.099 1.0452± 0.087

HB - - 0.580 ± 0.168

Einstein Telescope configuration D

EOS H HB B

2H 20.352± 0.314 20.739± 0.369 20.890± 0.360

H - 7.740± 0.914 9.130± 0.866

HB - - 5.095± 1.490

in parameter compared to the other EOSs (relative to
EOS H, ∆R = 2.95 km and ∆Λ1/5 = 0.555), has a value
ρdiff > 2 for aLIGO broad-band sensitivity curves when
compared to the other waveforms. Waveforms H, HB,
and B are closely and evenly spaced in log p∗, and give
smaller differences between waveforms.
The importance of numerical effects is estimated by

the variance in ρdiff (and thus δprand) between two EOSs
measured by making different choices of the representa-
tive numerical waveform for each EOS. These variances
are also shown in VI. The variation in ρdiff when one
waveform has EOS 2H resulting from choosing wave-
forms from different simulations is very small. The more
closely spaced the EOSs are, the more sensitive ρdiff will
be to variation in the choice of numerical waveform used,
with the small difference between HB and B showing the
largest (30%) variance over the set of numerical wave-
forms considered.
For large SNR signals, the measurability of a parame-

ter p can be estimated by the random error δprand, which
can be calculated using the Fisher matrix formalism (but
see [68]). If a waveform is parametrized by a set of pa-
rameters {λi}, then the Fisher matrix is given by

Γij =

�
∂h

∂λi

����
∂h

∂λj

�
, (15)

and the random error associated with the measurement
of a single parameter λj is

δλj, rand =
�

(Γ−1)jj , (16)

where the matrix (Γ−1)ij is the inverse of the Fisher ma-
trix Γij [69]. Given a coarse sampling of a single param-
eter with numerical simulations, the Fisher “matrix” is
simply given by a finite difference approximation to the
derivative as Γ ≈ ρdiff/(∆p)2. We use this approximation
in the present study, and our estimate for the random er-

SNR of differences between waveforms
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Measurability estimates: EOS effects

�δR�
���
Ravg

� R1 − R2
�
h(R1)− h(R2)

��h(R1)− h(R2)
�1/2

�δR�, R is radius of isolated neutron star

Broadband AdLIGO ET-D

R = 10.8 ±0.9 km ±0.09 km

R = 11.9 ±0.8 km ±0.10 km

Radius can be constrained with a strong Advanced LIGO signal

(in high-power detuned configuration)

based on numerical waveform alone.

Systematics from different numerical simulations with same EOS ∼ 0.1 km
Other sources: parameterization choice, discrete parameter sampling

Jocelyn Read (Mississippi) EOS from GW 30/4/11 14 / 18

Hybrid waveform model estimates
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