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Plan

Review:

Ryu-Takayanagi (RT) formula

Holography and quantum error correction (QEC)

Tensor network models of holographic codes

A discrepancy in entanglement structure between tensor networks
and holography

Fixed-area states in gravity have flat entanglement spectrum

Quantum error correction interpretation

Strengthened JLMS formula and implications for bulk reconstruction
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Ryu-Takayanagi Formula

The von Neumann entropy of a boundary spatial subregion R in any
semiclassical state ρ:

S(ρR) =
A[γR ]

4G

R

γR

r Rr

γR is the Hubeny-Rangamani-Takayanagi (HRT) surface: the
(minimal) extremal surface homologous to R.

Works at leading order in the semiclassical expansion in G .
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Quantum RT formula

At next order in G , the RT formula receives quantum corrections from
bulk fields: [Faulkner, Lewkowycz, Maldacena]

S(ρR) =
〈A[γR ]〉

4G
+ S(ρr )

R

γR

r Rr

Bulk entropy S(ρr ): von Neumann entropy of bulk fields in the
entanglement wedge of R.
Entanglement wedge: bulk domain of dependence of any homology
hypersurface.
Homology hypersurface: an achronal surface ΣR such that
∂ΣR = γR ∪ R.
At all orders in G , promote γR to “quantum extremal surface”
[Engelhardt, Wall; XD, Lewkowycz].
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AdS/CFT = Quantum Error Correction

Bulk operators can be reconstructed on different boundary subregions
=

Protected quantum information can be recovered in different ways after
partial erasures in a quantum error-correcting code

[Almheiri, XD, Harlow]
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Dictionary between AdS/CFT and QEC

AdS/CFT Quantum Error Correction

Semiclassical bulk states States in the code subspace

Different CFT representations
of a bulk operator

Redundant implementation of
the same logical operation

Algebra of bulk operators Algebra of protected operators
acting on the code subspace

Radial distance Level of protection
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Holographic codes

AdS/CFT is not just any code.

It is a special one known as a “subalgebra code with complementary
recovery”.

R

γR

r Rr

Subalgebra: bulk operators in the entanglement wedge of R are
precisely those recoverable on R.

Complementary recovery: bulk operators commuting with those
recoverable on R can be recovered on R.

Derived from the quantum RT formula. [XD, Harlow, Wall; Jafferis,

Lewkowycz, Maldacena, Suh]
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Tensor network models of holographic codes

Networks made from
perfect tensors:
(or random tensors)

[Pastawski, Yoshida,

Harlow, Preskill;

Hayden, Nezami, Qi,

Thomas, Walter, Yang]

They are subalgebra codes with complementary recovery – in fact,
special ones where the code subspace factorizes:

Hcode = Hr ⊗Hr

and the subalgebra recoverable on R simply consists of all operators
acting on the subsystem r of the code subspace.

Tensor network with edge modes [Donnelly, Michel, Marolf, Wien] does
not obey this factorization. We will return to it later.

Other tensor networks (such as MERA) are useful for different
purposes. We focus on the ones above because they are nice codes.
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Interestingly, these tensor networks also satisfy the quantum RT formula:

S(ρR) =
〈A[γR ]〉

4G
+ S(ρr )

To see this, represent the tensor network by a circuit diagram.

|χ〉: Product of EPR pairs on each link cut by γR .

Feed an arbitrary state ρr r into the r r indices of the circuit:

S(ρR) = S(χR) + S(ρr )

χR : restriction of |χ〉 to R.

S(χR): proportional to the number of links cut by γR . Area term in
the quantum RT formula!

Xi Dong (UCSB) Flat Entanglement Spectra in Fixed-Area States of Quantum Gravity10



Interestingly, these tensor networks also satisfy the quantum RT formula:

S(ρR) =
〈A[γR ]〉

4G
+ S(ρr )

To see this, represent the tensor network by a circuit diagram.

|χ〉: Product of EPR pairs on each link cut by γR .

Feed an arbitrary state ρr r into the r r indices of the circuit:

S(ρR) = S(χR) + S(ρr )

χR : restriction of |χ〉 to R.

S(χR): proportional to the number of links cut by γR . Area term in
the quantum RT formula!

Xi Dong (UCSB) Flat Entanglement Spectra in Fixed-Area States of Quantum Gravity10



Interestingly, these tensor networks also satisfy the quantum RT formula:

S(ρR) =
〈A[γR ]〉

4G
+ S(ρr )

To see this, represent the tensor network by a circuit diagram.

|χ〉: Product of EPR pairs on each link cut by γR .

Feed an arbitrary state ρr r into the r r indices of the circuit:

S(ρR) = S(χR) + S(ρr )

χR : restriction of |χ〉 to R.

S(χR): proportional to the number of links cut by γR . Area term in
the quantum RT formula!

Xi Dong (UCSB) Flat Entanglement Spectra in Fixed-Area States of Quantum Gravity10



Interestingly, these tensor networks also satisfy the quantum RT formula:

S(ρR) =
〈A[γR ]〉

4G
+ S(ρr )

To see this, represent the tensor network by a circuit diagram.

|χ〉: Product of EPR pairs on each link cut by γR .

Feed an arbitrary state ρr r into the r r indices of the circuit:

S(ρR) = S(χR) + S(ρr )

χR : restriction of |χ〉 to R.

S(χR): proportional to the number of links cut by γR . Area term in
the quantum RT formula!

Xi Dong (UCSB) Flat Entanglement Spectra in Fixed-Area States of Quantum Gravity10



This is the manifestation of a general property of quantum error
correction:

Any subalgebra code with complementary recovery satisfies a “quantum
RT formula”. [Harlow]
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All of this is very satisfactory.

Should we congratulate ourselves? Not yet...
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A discrepancy in entanglement structure

When discussing von Neumann entropy, a supporting role is played by
Renyi entropies:

Sn(ρ) ≡ 1

1− n
log Tr ρn

Useful way of computing von Neumann entropy by taking n→ 1.

Interesting on their own: n-dependence probes much more
information about ρ, in principle allowing to extract the
entanglement spectrum.
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In tensor network models, the same circuit argument leads to

Sn(ρR) = Sn(χR) + Sn(ρr )

|χ〉 consists entirely of maximally entangled EPR pairs, so χR is
maximally mixed:

Sn(χR) =
1

1− n
log Trχn

R = S(χR)

Ignoring the bulk entropy Sn(ρr ):

Sn(ρR) ≈ S(χR)

Renyi entropy is independent of n, indicating a flat entanglement
spectrum (at leading order in the semiclassical expansion).

But this is not what gravity predicts!
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Holographic Renyi entropy depends on n nontrivially even at leading
order in G .

An easy way to see this:

RT-like formula for “refined Renyi entropy”: [XD; Lewkowycz,

Maldacena]

S̃n(ρR) =
A[γR,n]

4G

Refined Renyi entropy:

S̃n(ρ) ≡ n2∂n

(
n − 1

n
Sn(ρ)

)
= −n2∂n

(
1

n
log Tr ρn

)
It is also the von Neumann entropy of ρn (properly normalized).

γR,n: a cosmic brane replacing the HRT surface.

Has tension (n − 1)/(4nG ) and backreacts on the bulk geometry.

S̃n(ρR) depends on n nontrivially, and so does Sn(ρR).

R

γR

r Rr
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How to resolve this discrepancy?

Change the tensors in the network? |χ〉 is still a maximally
entangled state.

Change the contraction rule to insert a non-maximally entangled
state? Unlikely to capture the full n-dependence in holography
(especially with multiple intervals).

An important difference here: geometry is frozen in tensor networks
but dynamical in gravity.

Tensor networks simply bad models of holography and we should
abandon them? No...
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No...
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Instead, we will show that tensor networks have it right in the following
sense:

There are special states in the gravitational theory, which are
analogous to tensor network states and have n-independent Renyi
entropies.

These are “fixed-area states”, with the HRT surface area fixed.

A general semiclassical state is a superposition of many fixed-area
states, and its Renyi entropy is determined by integrating over area.

For given n, the integral is dominated by a single value of the area,
but this value changes with n, reflecting the nontrivial backreaction.
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Fixed-area state: an analogy

Start with a thermal state (in the canonical ensemble). Its Renyi
entropy depends on n nontrivially.

Now fix the energy to a small window, giving the microcanonical
ensemble. This is roughly analogous to a fixed-area state.

The Renyi entropy is now independent of n (approximately), because
the microcanonical ensemble has a flat entanglement spectrum.

Now, let us define fixed-area states precisely.
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First, recall that in tensor networks:

Hcode = Hr ⊗Hr

In AdS/CFT, Hcode consists of semiclassical bulk states, and r , r are
the entanglement wedges of R, R.

R

γR

r Rr

Hcode does not factorize due to diffeomorphism invariance (just like
in any gauge theory such as Maxwell theory). Instead:

Hcode =
⊕
α

(Hrα ⊗Hrα)

α denotes superselection sectors.

More precisely, α labels degrees of freedom in the shared “center” of
two von Neumann algebras that are commutants of each other and
consist of operators acting on r , r respectively.

In Maxwell theory, α can be chosen as the gauge potential on the
shared boundary (modulo gauge transformations).
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Fixed-area states

In AdS/CFT, the area of the HRT surface γR is in the center.

It is therefore natural to project a semiclassical bulk state to a fixed
area on γR .

To be concrete, start with a general state |ψ〉 prepared by a
Euclidean gravitational path integral with boundary sources.

Define a fixed-area state |ψÂ〉 by the same bulk path integral but

only configurations where the area of γR is Â are integrated over.
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The norm of such a fixed-area state is calculated semiclassically by a
saddle-point geometry g1 with a conical defect on γR . The area of
γR is fixed, so g1 is not required to satisfy the EOMs there.

The Renyi entropy on the boundary region R is determined using the
replica trick by an n-fold bulk path integral Zn:

Sn(ρR) =
1

1− n
log

Zn

Z n
1

Zn is again dominated semiclassically by a saddle-point geometry gn,
but gn is simply the n-fold cover of g1. No gravitational
backreaction is needed here because of the fixed area.

This is reminiscent of the lack of backreaction in tensor networks.
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Flat entanglement spectrum

Not surprisingly, it can be shown that Renyi entropy in a fixed-area
state |ψÂ〉 does not depend on n:

Sn(ρR) =
Â

4G

2 4 6 8 10
n

Sn

A quick way to see this: the refined Renyi entropy S̃n(ρR) is given by
the cosmic brane area. Since the area is fixed, it is independent of n.
The Renyi entropy is obtained by an integral

Sn(ρR) =
n

n − 1

∫ n

1

S̃n′(ρR)

n′2
dn′

and therefore also n-independent.
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Comments

Our argument shows that Renyi entropy in a fixed-area state is
independent of n at leading order in G .

Actually, a stronger statement exists: in a certain sense, the flatness
result applies to next order in G as well. We will come back to this
later.
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Origin of n-dependence in general semiclassical states

We started with a general semiclassical state |ψ〉 prepared by a bulk
path integral, projected it to a fixed area to obtain a new state |ψÂ〉,
and showed that the Renyi entropy in |ψÂ〉 is independent of n.

But how about the Renyi entropy in the original state |ψ〉?
It is given by an n-fold bulk path integral without fixing the area,
but we can perform it first with a fixed area Â and then integrating
over Â:

Zn =

∫
Dgne−I [gn] =

∫
dÂ

∫
Dgne−I [gn]δ(AγR [gn]− Â)

For fixed Â, this is what we did for the fixed-area state |ψÂ〉. It is
semiclassically dominated by our previous saddle-point geometry
g saddle
n (Â):

Zn =

∫
dÂe−I [g

saddle
n (Â)]

This final integral is dominated by a saddle point An that depends on
n. This is the origin of n-dependence in holographic Renyi entropy!
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For fixed Â, this is what we did for the fixed-area state |ψÂ〉. It is
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n (Â)]

This final integral is dominated by a saddle point An that depends on
n. This is the origin of n-dependence in holographic Renyi entropy!

Xi Dong (UCSB) Flat Entanglement Spectra in Fixed-Area States of Quantum Gravity24



Origin of n-dependence in general semiclassical states

We started with a general semiclassical state |ψ〉 prepared by a bulk
path integral, projected it to a fixed area to obtain a new state |ψÂ〉,
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n (Â):

Zn =

∫
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Thus we resolved the discrepancy between tensor networks and
holography.

Tensor networks give states that are analogous to fixed-area states
of quantum gravity. They are all in the same superselection sector
because the code subspace factorizes and there is no nontrivial
center.

Gravity is automatically equipped with diffeomorphism invariance
and a nontrivial center. A general gravitational state spans many
superselection sectors, and different sectors dominate Renyi
entropies at different values of n.

We should build and study better tensor network models of
holographic codes by adding a nontrivial center!
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Quantum error correction interpretation
Consider a general subalgebra code with complementary recovery.
The code subspace is decomposed as

Hcode =
⊕
α

(Hrα ⊗Hrα)

Within each α sector, a state can be encoded by the same circuit we
saw before:

The flatness result we found on the gravity side has a striking
interpretation for holographic codes: in each α sector, the state |χ〉
must have a flat entanglement spectrum.
This property, together with the existence of a nontrivial center,
provides a new condition for quantum error-correcting codes to be
truly holographic!
As in bulk gravity, a general state in Hcode spans multiple α sectors
and can therefore have n-dependent Renyi entropy.
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Strengthened JLMS formula

Any subalgebra code satisfying the quantum RT formula (or
equivalently complementary recovery), including AdS/CFT, obeys a
version of the Jafferis-Lewkowycz-Maldacena-Suh (JLMS) formula:

PcKRPc =
A[γR ]

4G
+ Kr

Pc : projection operator onto Hcode . KR = − log ρR : boundary
modular Hamiltonian. Kr = − log ρr : bulk modular Hamiltonian.

However, we would really like to drop the projectors and have

KR =
A[γR ]

4G
+ Kr

This strengthened formula can be exponentiated to equate bulk and
boundary modular flows, which was essential in an explicit form of
entanglement wedge reconstruction [Faulkner, Lewkowycz].

Q: what does this have to do with flat entanglement spectra?

A: the strengthened formula holds if |χ〉 has a flat entanglement
spectrum within each superselection sector, through order G 0.
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Summary

Tensor network models of holographic codes satisfy the RT formula,
but they do it “too well” and obey RT even for Renyi entropy. The
resulting Renyi entropy is independent of n, in contradiction with
the prediction of AdS/CFT.

We resolved this discrepancy by reproducing the n-independent
behavior in special fixed-area states of quantum gravity, which are
analogous to tensor network states.

A general semiclassical state is a superposition of many fixed-area
states, and the origin of n-dependence of Renyi entropy is a
saddle-point value of the area that changes with n.

We interpreted all of this as a new condition for quantum
error-correcting codes to be truly holographic.

In particular, the state |χ〉 must have a flat entanglement spectrum
within each superselection sector.

This turns out to be precisely what we need for a strengthened
JLMS formula and one form of entanglement wedge reconstruction.
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Questions

1 What is the state |χ〉 in quantum gravity? In tensor networks it
consists of the links that holds the network together, so in quantum
gravity it is what can be thought of as “the fabric of spacetime”.

2 Can we build better tensor network models of holographic codes by
adding a nontrivial center and study them concretely? A useful
starting point appears to be the tensor network with edge modes
[Donnelly, Michel, Marolf, Wien].

3 What other surprises are there for us in the realm of quantum
gravity and quantum information?
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