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— Near-maximal chaos at SJ > 1

— Maximal chaos in the butterfly wavefront

Commutator OTOC and stringy states



e Consider an abstract quantum experiment setup:

— The initial state is

Naturally ordered (Keldysh) correlators

P = Psystem & Pprobe

— The system and the probe interact and evolve forward in time:

I

H= Hsystem = I8l

probe — Z X

system probe

— A measurement is performed

e The probability of a particular outcome,
expands into terms like this:

(X; X (8)T X, (8) -+ Xy (1))
t’l <t > >t
where (X)) := Tr(X psystem)

time ordering

P =Tr(U'Up)

time




Butterfly effect

e “A flap of a butterfly’s wing can change the weather.”

Is there a direct way to test this theory?



Butterfly effect

e “A flap of a butterfly’s wing can change the weather.”

Is there a direct way to test this theory?

Test 1: Run the time backward, introduce a butterfly, and run the
time forward. Check if the weather is different.

Test 2: Have two copies of the Earth, with and without the
butterfly (but otherwise in the same state).

e Both tests are well-defined in the quantum setting.
(Test 2 should be done on the thermofield double.)

e The butterfly effect can be characterized by out-of-time-order
correlators like (D(t)C(0)B(t)A(0)), where A, B, C, D are

some quantum observables.



Large N systems with all-to-all interactions

— Random Heisenberg model (N spins)
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e Chaos bound: s < %’r (Maldacena, Shenker, Stanford 2015)



Single-mode anzats for early-time OTOCs

O (02)xk (0) x5 (62) Xk (61)) + i) (e xe)
~ Cflei%(ﬂ'791702+93+6’4)/2 TR(Ql - 92) TA<93 o 04)

— We use the complex time variable 6 =it + 7

— For convenience, f =27 = 0<»x<1

(Kitaev, Suh [arxiv:1711.08467])

e Corollary (for Ref; = Refs3, Refy = Ref,):
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The SYK model

N Majorana operators x;
dimH = 2M/?

antisymmetric

" gkilm
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H == D Jjtim X3 Xk Xt Xom

Operator algebra = CLff(V):
XXk T XkXj = Ojk
Hilbert space H is described by

a Fock basis: built from |0,...,0)
by the raising operators

t_ Xon—1 — 1X2n
CI/ _
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— This is the ¢ = 4 variant of the model.

— More generally, one can consider interactions of order ¢ = 2,4,6, ...,

though the ¢ = 2 case is degenerate.

(Sachdev, Ye (1992), Maldacena, Stanford (2016), Kitaev, Suh (2017)



SYK model: the Green function

Definition of the imaginary-time Green function:

G(ri, ) = —(T x;(n)x;(7)) &

Bare Green function (for H = 0): G
éb = (—aT)A, Gb<71772) = —% Sgn(ﬁ - 7’2)

. . : ik
Disorder-averaged interaction: ’ oo X
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SYK model: the Schwinger-Dyson equations

o General structure of the Green function:

G _ Gy, +Gmeb Gb,E\Gb,?\Gb
A\ A\ A\

e Schwinger-Dyson equations: (|

Le. (ZG)(m, )= [dr(n,T

(T 7—2)7

e Solution at J > 1: neglecting the 0, term:

G(Ql, 62) ~ —bA(J912)72A sgn 012

where |A =1/q|, 012 =2sin

(Parcollet, Georges 1998)
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Connected four-point function F

(T (00 Xk 03)k(00)) = COr, 0)G B, 62) + - F (01, 02,6, 61)

e Diagrammatic expansion (up to subleading 1/N terms)

F(01,02,05,04) = —: z - :Ij B ; o o j

—.. +(3+4)

e Bethe-Salpeter equation: F = Fy+ KF
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Connected OTOC

OTOC(th t27 t37 t4> - _N_l-/—:(ela 927 83, 94)
= (G (01)x1(03) x5 (02) Xk (62)) + (x50 (k)
91:it1—|—7r, 92:it2, 93:it3+§, 94:it4—%

T . €
- i 3
1a—
|
3
_. !
2 é —t
4

F(6r, 05,05, 04) ~ / 085 s K (61, 05, 85, 6) F (B, 6o, s, 61)

folds



Kinetic equation and retarded kernel
o Let F(tl, tz) = OTOC(tl, t2, tg, t4) Then

F(ty,ty) = /dt5 dtg K (t1,t2,t5,t6) F(t5,t6)

K (tlat27t57t6 i’w - _‘]2 q - 1)GR(t15>GR(t26)GW(t56) -2

e Eigenfunctions: Ta(tl,tg) = e 2MFR)27 (4 — 1)

KR, = kp(a)Ts <  KBY, =kp(a)Ya,

where KR t,t") fKR(s—f—— s— Lt & —%) e* ds
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e Solving for the Lyapunov exponent: |kgr(—3) =1




Example: SYK model in the conformal limit

e The model is maximally chaotic: s ~ 1.

e The eigenfunctions TR and T‘}% are generated by the action of

Va

L*l = €t<at + A), L1 = eit(&g — A)
on the first variable of the Wightman function

Gw(tl, tg) = G(Ztl -+ W,itg) o

bA QAR J2A
GV (t1,t2) = — ran2A TR(t) = TA(t) = - t10\2A+1
(QJ cosh 7) (2 cosh 7)
e(t1+t2—t3—t4)/2 200N

OTOC(tl, t2,t3,t4) ~ TR(tlg)TA(t34), C

C
(C' is obtained from the Schwarzian theory)
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e Ladder identity:

Main results

2cos ZL

2
C

k(=) (YA, TR) =1
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(T 7T )_T‘@TR

— Allows for the calculation of C' from the retarded kernel;

— Conversely, in the case of near-maximal chaos, one can calculate
02 = 1 — 5 using ki (—1) from the conformal limit and C' from
the Schwarzian theory.

e Branching time tg = ki (—») is the average time separation s between
adjacent rungs in a ladder diagram contributing to the OTOC:
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Derivation sketch

e Idea: cut a long ladder in half; find a consistency condition.

— Cuting the ladder: Fix tg; find adjacent rungs such that

ts ' t7

t3
| ts + te by -+ tg
| <ty <
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tq
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to T
t [ t
6 o 8

— Consistency condition:
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— The factor 2 cos % = #7/2 4 ¢=#7/2 arises because there are two
different ways to put 5,6 on the double Keldysh contour.



Near-maximal chaos (J — oo, 3 — 1)

2 2
e The prefactor r = % in the commutator OTOC has a

finite limit:

-1
r = (Ka(=1) (T4, 14)) N~
e The correction to the Lyapunov exponent is
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Application to a 1D model

ijlm,;ﬂ—l ‘]J/’klmw
B [ : ﬁ . ] (Gu, Qi, Stanford 2016)
z—1 73 r+1

o OTOC,o(t1, b2, ts,ta) == (Xjw(01)Xk0(03) X2 (02) Xk0(0)) + (- )(- )

dp .
e Fourier transform: /2—p6’px OTOC,(t1, t2, t3, ta)
e \ ~~ t =

titta _ tatty
2 2
o C(p)_le"‘(P)t

s#(p) =~ #(0) — tpap? is equal to 1 at some p; = i|p,

hence C(p)~' = (N -2cos 28T . ¢5. (T4, TR))_1 has a pole.

e Result: The Lyapunov exponent in the butterfly wavefront is exactly
1 is J is above threshold.



Summary

e The ladder identity is very useful for calculating OTOCs.

e The inverse branching time ¢5' characterizes the strength of “stringy”
effects.

— Challenge: construct a model with tg > 1



