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Compound Nucleus

238U 239U

n

γ

Compound Nucleus

Bohr’s Model

� A compound nucleus equilibrates and has to be chaotic. May

saturate the quantum bound Maldacena-Shenker-Stanford-2016.

Estimate for T ∼ 10 MeV gives 2πkT/~ ∼ 1/[3fm/c] .
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Basic properties of a Compound Nucleus

� Levels of a compound nucleus are correlated according to

Random Matrix Theory.
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Chaos and Nuclear Levels

Number variance of nuclear levels for the the Nuclear Data Ensemble

as a function of the average level spacing r .

Bohigas-Haq-Pandey, 1985
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Basic properties of a Compound Nucleus

� Levels of a compound nucleus are correlated according to

Random Matrix Theory.

� Because the system is chaotic, all information on its formation gets

lost. Formation and decay of a compound nucleus are

independent (Hauser-Feshbach formula).

� A compound nucleus has quantum hair.
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Quantum Hair of a Compound Nucleus

Quantum hair of a compound nucleus – Total cross section versus

energy (in eV ).

Garg-Rainwater-Petersen-Havens,1964
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Basic properties of a Compound Nucleus

� Levels of a compound nucleus are correlated according to

Random Matrix Theory.

� Because the system is chaotic, all information on its formation gets

lost.

� Formation and decay of a compound nucleus are independent

(Hauser-Feshbach formula).

� A compound nucleus has quantum hair.

� The level density of a compound nucleus behaves as

ρ(E) ∼ exp(c
√
E − E0) .
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Bethe Formula for the Nuclear Level Density

� The nuclear level density

behaves as eα
√
E−E0 .

T. von Egidy
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Basic properties of a Compound Nucleus

� Because the system is chaotic, all information on its formation gets

lost.

� Formation and decay of a compound nucleus are independent

(Hauser-Feshbach formula).

� A compound nucleus has quantum hair.

� Level of a compound nucleus are correlated according to Random

Matrix Theory.

� The level density of a compound nucleus behaves as

ρ(E) ∼ exp(c
√
E − E0) .

� The compound nucleus cross-section is holographic.
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Holography in Nuclear Physics

Because the compound nucleus is chaotic, the fluctuations of the

S-matrix are universal so that the average cross-section, 〈|Sab|2〉 only

depends on the average diagonal S -matrix elements

〈|Sab|2〉 = δab|〈Sab〉|2 + 〈|Sfluc

ab |2〉 = Funiversal(〈Scc〉)

with Funiversal a universal function. JV-Weidenmüller-Zirnbauer-1983,

Mello-Pereyra-Seligman-1984

The average diagonal S -matrix is obtained by an energy average over

large intervals. Therefore the average diagonal S matrix is determined

by the fast processes, in which a compound nucleus is not formed, i.e.

the physics that takes place at the surface of the nucleus.
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Basic properties of a Compound Nucleus

� Levels of a compound nucleus are correlated according to

Random Matrix Theory.

� Because the system is chaotic, all information on its formation gets

lost.

� Formation and decay of a compound nucleus are independent

(Hauser-Feshbach formula).

� A compound nucleus has quantum hair.

� The level density of a compound nucleus behaveS as

ρ(E) ∼ exp(c
√
E − E0) .

� The compound nucleus cross section is holographic.

� The nuclear interaction is mostly a two-body interaction.
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The Complex SYK Model

H =
∑

αβγδ

Wαβγδa
†
αa

†
βaγaδ.

French-Wong-1970

Bohigas-Flores-1971

The labels of the fermionic creation and annihilation operators run over

N single particle states. The Hilbert space is given by all many particle

states containing m particles with m = 0, 1, · · · , N .

� Wαβγδ is Gaussian random.

� The Hamiltonian is particle number conserving.

� The matrix elements of the Hamiltonian are strongly correlated.

Brody-et-al-1981, Brown-Zelevinsky-Horoi-Frazier-1997,

Izrailev-1990,Kota-2001,Benet-Weidenmüller-2002,Zelevinsky-Volya-2004,

Borgonovi-Izraelev-Santos-Zelevinsky-2016
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First Numerical Results

Comparison of the spectral density of the GOE and the two-body

random ensemble for the sd-shell. Bohigas-Flores-1971
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The Sachdev-Ye-Kitaev Model

The SYK Model
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The Sachdev-Ye-Kitaev (SYK) Model

The two-body random ensemble from nuclear physics also has merged

into the SYK model, where the fermion creation and annihilation

operators are replaced by Majorana operators (in general q of them.

For q = 4 the model is Sachdev-Ye-1993,Kitaev-2015

H =
∑

α<β<γ<δ

Wαβγδχαχβχγχδ, q = 4.

The fermion operators satisfy the commutation relations

{χα, χβ} =
1

2
δαβ .

The two-body matrix elements are taken to be Gaussian distributed

with variance that is chosen such that the ground state energy scales

with N .
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Solving the SYK Model

� For q = 2 the model can be solved by diagonalizing the two-body

matrix elements.

� Moment method. Moments have been calculated to order 1/N4 for

arbitrary q. Garcia-Garcia-Jia-JV-2018, Jia-JV-2018

Berkooz-Isachenkov-Narovlansky-Torrents-2018

� Formulating the model as a Feynman path integral. This makes it

possible to take the large-N limit. Sachdev-Ye-1993,Kitaev-

2015,Maldacena-Stanford-2016,Klebanov-Tarnopolsky

� Generating function 〈det(H + z)〉 , 〈det(H + z)/ det(H + z′)〉 .

JV-Zirnbauer-1983, Benet-Weidenmüller-2002,Altland-Bagrets-2017

� Representing the Majorana fermions as γ-matrices in N

dimensions. This allows numerical diagonalization up to N = 42.

Maldacena-Stanford-2015,Garcia-Garcia-JV-2016,Cotler-et-al-2016,Gur-

Ari-Mahajan-Vaezi-2018
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Scaling Limit of the Spectral Density of the SYK
Model

� N ≫ q2 : the eigenvalue density is point-wise a Gaussian.

Mon-French-1971, Garcia-Garcia-JV-2016

� q2 ≫ N : the eigenvalue density is point-wise a semicirle.

Mon-French-1971, Benet-Weidenmüller-2002, Liu-Nowak-Zahed-2017

� q2/N fixed for N → ∞ : This is a nontrivial scaling limit where the

spectral density converges to the weight function of the Q-Hermite

polynomials. Cotler-etal-2016,

Garcia-Garcia-JV-2017,Berkooz-Isachenkov-Narovlansky-Torrents-2018.
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The Spectral Density of the SYK Model

Bethe Formula

Q-Hermite Approximation
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Bethe Formula

The low-temperature limit of the partition function is given by

Z(β) ∼ 2N/2e
−π2N

4q2

β3/2
ec/(2β).

Georges-Parcolet-Sachdev-2000,Bagrets-Altland-Kamenev-2017,

Standford-Witten-2017

The level density is given by the Laplace transform of the partition

function.

ρ(E) =

∫ r+i∞

r−i∞
dβeβEZ(β) ∼ sinh(

√

2c(E − E0)).

This gives the Bethe formula for the nuclear level density.

Bethe-1936
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The Q-Hermite Approximation

In the large N limit, we have that ( H =
∑

wαΓα )

[ΓαWα,ΓβWβ ] = 0 for α ∪ β = 0.

Therefore are Wick contractions can be commuted to neighboring Wick

contractions. Using that Γ2
α = 1 we obtain Mon-French-1975

〈TrH2p〉 = (2p− 1)!!〈TrH2〉p.

These are the moments of a Gaussian distribution. One actually can

do better than this. Γα and Γβ commute or anti-commute depending

on the number p of indices they have in common Garcia-Garcia-JV-2016

ΓαWαΓβWβ + (−1)p+1ΓβWβΓαWα = 0.

The Q-Hermite approximation is if all such crossings are treated

independently.
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Spectral Density of the SYK Model

The Q-Hermite approximation to the spectral density is given by

Erdos-2014,Cotler-et-al-2016,Garcia-Garcia-JV-2017

ρQH(E) = cN
√

1− (E/E0)2
∞
∏

k=1

[

1− 4
E2

E2
0

(

1

2 + ηk + η−k

)]

with E2
0 = 4σ2

1−η , η =
(

N
q

)−1 ∑

p(−1)p
(

q
p

)(

N−q
q−p

)

and σ the variance of

the spectral density. This approximation neglects correlations that

enter in more complicated contractions.

In the large-N limit at fixed q2/N the Q-Hermite result away from the

edge of the spectrum is given by

ρasym(E) = cN exp

[

2 arcsin2(E/E0)

log η

]

, η ≈ exp(−2q2/N).

Garcia-Garcia-JV-2017
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Comparison with Numerical Results for q = 4
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Comparison of the exact spectral density obtained by numerical

diagonalization and the Q-Hermite result for the spectral density.

Garcia-Garcia-JV-2017
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Spectral Correlations

Unfolding

Correlations

Number Variance

Spectral Form Factor
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Unfolding

� The average spectral density is not universal, and for comparison

with random matrix theory, the dependence of the spectral

fluctuations on the average spectral density have to be eliminated.

This is essential.

� This is achieved by unfolding the spectrum, i.e. by mapping the

spectrum by a smooth transformation to one with spectral density

equal to 1.

� To isolate the correlations one also subtracts to disconnected part

of the correlation functions.
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Correlations of eigenvalues

Pair correlation function of ρλ =
∑

k δ(λ− λk)

〈ρ(λ)ρ(λ′)〉 − 〈ρ(λ)〉〈ρ(λ′)〉 = 〈ρ(λ)〉δ(λ− λ′)− sin2(πN(λ− λ′)

(πN(λ− λ′))2
,

where we gave the result for the simplest random matrix theory (GUE).

The δ-function always occurs if the spectrum is discrete. It is just the

diagonal term in

∑

kl

δ(λ− λk)δ(λ
′ − λl).

The Wigner-Dyson form of the eigenvalue correlations is strongly

universal, and is found in systems all over physics.

Agreement with a specific RMT is determined by the non-unitary

symmetries of the system.
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Correlations and Spontaneous Symmetry
Breaking

∑

k,l

〈

1

x− Ek − iǫ

1

y − El + iǫ

〉

−
∑

k

〈

1

x− Ek − iǫ

〉

∑

l

〈

1

y − El + iǫ

〉

.

Large contributions occur when the phase cancels, i.e. when

x− Ek ≈ y − El or x− y ≈ Ek − El .

Replica symmetry broken as: U(2) → U(1) × U(1)

or: U(1,1) → U(1) × U(1).

The corresponding low-energy effective theory is unique which is the

underlying reason for the universality of random matrix behavior.

Universal behavior arises in a double scale limit. In standard RMTs,

N(x− y) is kept fixed, but in the SYK model 2N/2(x− y) has to be

kept fixed for N → ∞ .
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Characterization of Universal Random Matrix
Behavior

� Short range repulsion of the eigenvalues as Sβ .

� Spectral rigidity. The variance of the number of level in an interval

containing n eigenvalues on average behaves as (β/2π2) log n

rather than n when correlations are absent.

� The classical limit of a theory with spectral correlations given by

the Wigner-Dyson ensembles is a chaotic theory

(Bohigas-Giannoni-Schmidt conjecture-1984).

The reverse of the Bohigas-Gionnioni-Schmidt conjecture also holds: if

the system is not fully chaotic the level correlations deviate from the

Wigner-Dyson results Seligman-JV-Zirnbauer-1984.
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Number Variance

Σ2(n) =

∫ λ̄

0

∫ λ̄

0

(〈ρ(λ)− 〈ρ(λ))(ρ(λ′)− 〈ρ(λ′)〉)〉dλdλ′,

∫ λ̄

0

dλ〈ρ(λ)〉 = n.

� The δ function results in a linear term, Σ2(n) ∼ n .

� The 1/(λ− λ′)2 term gives a logarithmic term , Σ2(n) ∼ 1
π2 log n .

� For uncorrelated eigenvalues we only have the delta function so

that Σ2(n) = n.
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Spectral Form Factor

Kc(t) =

∫

dxdyeit(x−y)(〈ρ(x)ρ(y)〉 − 〈ρ(x)〉〈ρ(y)〉)e
− x2+y2

2w2

√
πw

,

where we have added a regulator to remove finite size effects

( w . 2N/2 ) .
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Relation Between Spectral From Factor and
Number Variance

Σ2(n) =
1

2π

n2

π

∫ ∞

−∞
Kc(t)

(

sin(nt/2)

nt/2

)2

.

Delon-Jost-Lombardi-1991

Short time behavior of the form factor determines the large n behavior

of the number variance:

Kc(t) Σ2(n)

δ(t) → n2

Constant → Kc(0)n
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Spectral Correlations of the SYK Model

Questions

Expansion in Q-Hermite Polynomials

Collective Eigenvalue Fluctuations

Number Variance

Spectral Form Factor
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Number Variance and Spectral Form Factor

0 20 40 60 80 100
 L

0

0.5

1

1.5

Σ
2
(L)

N = 22
N = 34
GUE

Number variance versus the

length of the interval.

Garcia-Garcia-JV-

arXiv:1610.02363

Spectral from factor versus time.

Cotler-Gur-Ari-Hanada-Polchinski-

Saad-Shenker-Streicher-Tezuka-

arXiv:1611.04650
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Questions

� To what extent is the SYK model chaotic?

� What is the source for the deviations from the Wigner-Dyson

ensembles?

� What is the scale at which the deviations occur?

� Why are results for the spectral form factor and the number

variance seemingly different?
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Separating out the Secular Behavior

After subtracting the spherical harmonics only a thermal spectrum is

left. If we unfold configuration by configuration only RMT fluctuations

remain.
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Expansion in Q-Hermite Polynomials

ρSYK(E) = ρQH(E)
[

∑

akH
Q
k (E/σ)

]

.

Both the ensemble average and the spectral density for a given

configuration can be expanded this way. We have

a0 = 1, a1 = 0,

〈a2〉 = 0, 〈a4〉 = 0, 〈a2k+1〉 = 0/

Numerically, the nonzero |ak| < 0.005 and decreasing for larger k for

N = 32 and q = 4 .

Long-wavelength fluctuations are contained in the fluctuations of the

ak for small k . RMT fluctuations are contained in the coefficients with

k ∼ 2N/2 .
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Extreme Unfolding
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To study eigenvalue correlations, the unfolding has to be extremely

accurate. The 8th order Q-Hermite approximation gives agrees with

the ensemble average to about 0.1 level spacing.
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Long Range Correlations
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� Quadratic term is due to a constant term in the two-point correlator.

� The constant corresponds to overall scale fluctuations from one

realization of the ensemble to the next.

� In the spectral form factor this gives a delta function at t = 0 .

Altland-Bagrets-arXiv:1712.05073,Garcia-Garcia-Jia-JV-

arXiv:1801.02696,Gharibyan-Hanada-Shenker-Tezuka-arXiv:1803.08050
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Deviations from Universal RMT Behavior

Deviations from the universal RMT results have two sources:

� Collective fluctuations from one realization of the ensemble to the

next.

� For a given realization, at small time scales the spectral

correlations are dominated by the details of the system.

The SYK model actually does not have any structure. So we should

find RMT fluctuations to very large distance if the eliminate the

collective fluctuations. This is achieved by unfolding configuration by

configuration.
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Fluctuations of the Ensemble
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∆N(E) =

∫
E

E0

(ρ(E′)− 〈ρ8QH(E
′)〉)dE′

Difference between the cumulative spectral density (mode number) of

a given configuration and the eighth order Q-Hermite fit to the

ensemble average of the spectral density. Garcia-Garcia-Jia-JV-2018
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Scale Fluctuations

Fluctuations of a2 correspond to overall scale fluctuations

λk → λk(1 + δ) . They are determined by the moment French-

1973,Flores-Horoi-Müller-Seligman-2000,Hanada-Shenker-Tezuka-2018

〈TrH2TrH2〉 − 〈TrH2〉〈TrH2〉 = 2

(

N

q

)−1

.

Such scale fluctuations contribute to the number variance as

Σ2(n) = n2〈δ2〉 = 1

2

(

N

q

)−1

n2.

Numerically this gives (n/268)2 while from fitting the number variance

we obtain (n/294)2 . For large N this behaves as n2q!/2Nq, which,

for q = 4 , is close to 4πn2/N4 . Altland-Bagrets-2017
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Collective Fluctuations of Higher Multipoles

Long wave-length fluctuations by other ak contribute to the number

variance at much small scales. Patches with an alternating smaller and

larger spectral density relative to the ensemble average do contribute

to the number variance. These contributions can be estimated from the

covariance matrix of the ak and also behave as n2/N4 plus

corrections. Garcia-Garcia-Jia-JV-2018
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∆3 Statistic
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The ∆3 statistic is obtained by

integrating the number variance

over a smoothening kernel.

∆3(n) =
2

n4

∫
n

0

dr(n3 − 2n2
r + r

3)Σ2(r).

The kernel maps r2 to zero.
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Wavelength of Collective Fluctuations
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Difference between the exact SYK cumulative spectral density of a

single realization and the 2k-th order Q-Hermite approximation.

∆N(E) =

∫ E

E0

(ρ(E′)− 〈ρkQH(E
′)〉)dE′
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Number Variance for Local Unfolding
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Number variance (black points) versus the average number of levels n

in the interval.
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Switching off the Collective Fluctuations
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Fluctuations of a2, · · · , a6 are responsible for the deviation2 from the

universal RMT result.

This means that ak≥7 fluctuate according to the GOE.
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Spectral Form Factor
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Unfolding with the ensemble average of the spectral density gives a

Gaussian peak with width ≈ 1/(
√
2w) centered at zero. Unfolding with

eight order Q-Hermite polynomials completely removes this peak, and

agreement with the GOE is seen until very short time scales, where

finite size effects become important (
tramp

tkink
≈ 1.5× 10−4 ).

The range of agreement with the GOE in the left figure agrees with the

range of GOE behavior in [**] with no unfolding or subtraction of the

disconnected part, but the peak at zero is a factor 106 lower.

[**] Gharibyan-Hanada-Shenker-Tezuka-arXiv:1803.08050
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Spectral Form Factor when Switching off
Collective Fluctuations
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tramp

tkink
≈ 1.5× 10−4 ≈

√
N

2N/2/2
.
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Scale Transformations and Spectral Form Factor

Kc(t) =
∑

k,l

eit(Ek−El) −
∣

∣

∣

∣

∣

∑

k

eitEk

∣

∣

∣

∣

∣

2

A scale tranformation Ek → Ek(1 + δ) correspond to

Kc(t) → Kc(t(1 + δ))

Averaging,

〈Kc(t(1 + δ)〉 = Kc(t) +
1

2
K ′′

c (t)〈δ2〉

Only gives contributions at the kink or when Kc(t) deviates from the

random matrix result such that K ′′
c (t) 6= 0 .
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Consistency Check
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Number variance calculated from the spectral form factor.

If the peak near zero of Kc(t) is replaced bu the GOE result (red

curve), then the GOE result for the number variance is recovered.
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Scale of Universal Random Matrix Fluctuations

� The ensemble fluctuations of the spectral density of the SYK

model are long wavelength fluctuation contained in a small number

( O(N) ) coefficients of the Q-Hermite expansions. The covariance

matrix of these coefficients can be calculated analytically and is in

agreement with the numerical results Garcia-Garcia-Jia-JV-2018.

� Taking out these long-range fluctuations, the spectral correlations

of the SYK model becoming universal up to the maximum scale -

up to a significant fraction of 2N/2/2 .

� For N = 32 we only need a sixth order polynomial to eliminate the

collective fluctuations. So 2N/2/N0.5−1 level spacings would be a

good estimate for the energy scale of Wigner-Dyson correlations.
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Ergodicity

� Level fluctuations relative to the ensemble average deviate from

random matrix theory at a scale of Nq/2 level spacings and mainly

due to scale fluctuations. In the spectral form factor these

fluctuations give a delta function at time zero.

� The discrepancy in the scale of universal random matrix behavior

between the spectral form factor and the number variance was

obtained analytically starting from a spectral determinant

Altland-Bagrets-2017, see next talk.

� The ensemble average of the number variance is not equal to the

spectral average of the number variance.

� This also happens for eigenvalues of the Dirac operator in QCD.
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Ergodicity in QCD

Number Variance

Chiral Lagrangian
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Spectral Correlations in Lattice QCD

1000 2000

∆ (n)
 3

n

Eigenvalue Correlations of eigenvalues of the Dirac operator for a

single configuration (left, Halasz-JV-1996), or obtained by unfolding

configuration by configuration (right, Guhr-Ma-Meyer-Wilke-1999 ), seem

to know nothing about QCD. The Dirac eigenvalues follow the RMT

prediction up the maximum allowed by statistics.
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Number Variance from Zero
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q = 3

Number variance for two-color QCD for various volumes

Berbenni-Bitsch-et-al-1998 and the number variance of the SYK model

for various numbers of fermions Garcia-Garcia-Jia-JV-2018. The

Thouless energy is ∼
√
V for QCD and ∼ N for the SYK model.

SYK, UCSB 2018 – p. 58/60



Spectral Fluctuations and Chiral Lagrangians

� In QCD the agreement of Dirac spectra and its deviations have

been explained completely in terms of a chiral Lagrangian.

� The deviations are due to the kinetic term while the mass term

gives the universal random matrix result. It gives the correct value

of the pion decay constant.

� Unfolding configuration by configuration gives spectral fluctuation

up to the highest scale that can be studied within the available

statistics (100 to 1000 level spacings). This suggests that the

spectral form factor will follow the universal random matrix result

up to very short times.

� The effective Lagrangian that describes spectral fluctuations of the

SYK model is an ensemble average. It is not fully understood how

it describes the universal Random Matrix results and its deviations,

but the linear dependence of the form factor was obtained

Saad-Shenker-Stanford-2018. SYK, UCSB 2018 – p. 59/60



IV. Conclusions

� The weight function of the Q-Hermite polynomials is very close to

the spectral density of the SYK model. The difference is given by a

few low-order Q-Hermite polynomials.
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IV. Conclusions

� The weight function of the Q-Hermite polynomials is very close to

the spectral density of the SYK model. The difference is given by a

few low-order Q-Hermite polynomials.

� The deviations from universal random matrix theory are given by

the fluctuations their expansion coefficients. The covariance matrix

of these coefficients can be obtained analytically.

� Universal Random Matrix behavior persists until ≈ 2N/2/
√
N level

spacings.

� These results are consistent with the fact that the SYK model is

maximally chaotic.

� In a sense a black hole is dual to a compound nucleus.
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