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e Based in part on
IK, Fedor Popov, Grigory Tarnopolsky,
“TASI Lectures on Large N Tensor Models,”
arXiv: 1808.09434



Three Large N Limits

e O(N) Vector: solvable because the bubble

diagrams can be summed. (¥) (X Y)

e Matrix (‘t Hooft) Limit: planar diagrams.
Solvable only in special cases.

* Tensor of rank three and higher. When
interactions are specially chosen, dominated
by the “melonic” diagrams. Bonzom, Gurau, Riello,

Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky
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O(N) x O(N) Matrix Model

* Theory of real matrices ¢2° with distinguishable
indices, i.e. in the bi-fundamental

representation of O(N)_xO(N), symmetry.
* The interaction is at least quartic: g tr ¢dp"dpo’

* Propagators are represented by colored double
ines, and the interaction vertex is

e In d=0 or 1 special limits describe two-
dimensional guantum gravity.




e Inthelarge N limit
where gN is held fixed
we find planar Feynman

graphs, and each index 0

loop may be red or 5»‘%’

green. \: Il""*” %
e The dual graphs shown ﬁk“%g%"..

in black may be thought ;ﬂ" Nala
of as random surfaces /ﬂ’%ﬂ'ﬁi

tiled with squares whose ‘/ .. B
vertices have alternating 7/~ :'70‘7‘5;‘;
colors (red, green, red, S

green).



From Bi- to Tri-Fundamentals

* For a 3-tensor with distinguishable indices the
propagator has index structure

<¢abc¢a’b’c’> _ 5aa’5bb’500’
* [t may be represented graphically by 3 colored
wires & b

* Tetrahedral interaction with abicy
O(N)_xO(N), xO(N)_.symmetry

Carrozza, Tanasa; IK, Tarnopolsky an ;
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e Leading correction to the propagator has 3

index loops A

N

e Requiring that this “melon” insertion is of
order 1 means that \ = gN?/> must be held
fixed in the large N limit.

 Melonic graphs obtained by iterating

A
N




Shails vs. Melons

e Inlarge N vector models snail diagrams
dominate.

* |n matrix models both contribute.

* |n tensor models with tetrahedral interactions
the melons dominate.



O

* The snail insertion scales as g ~ 2

e The melon insertion as ¢2N3 ~ A2

e The melonic dominance would not hold if we
adopted the ”pillow interactions”

1)111()\\ 1)111()\\ 1)111()\\

instead of the tetrahedral
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Cables and Wires

e The Feynman graphs of the quartic field
theory may be resolved in terms of the
colored wires (triple lines)
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Non-Melonic Graphs

e Most Feynman graphs in the quartic field theory
are not melonic are therefore subdominant in the

new large N limit, e.g.

P

e Scalesas ¢ N® ~ N3N N3/2

* None of the graphs with an odd number of
vertices are melonic.



 Here is the list of snail-free vacuum graphs up
to 6 vertices Kleinert, Schulte-Frohlinde
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. OnIy 4 out of these 27 graphs are melonic.

e The number of melonic graphs with p vertices
grows as CP Bonzom, Gurau, Riello, Rivasseau



Large N Scaling

* “Forgetting ” one color we get a double-line
graph.

DB DD

e The number of loops in a double-line graph is
f=x+e—v where X isthe Euler characteristic,

e is the number of edges, and v is the number of
vertices, e = 2v

e |f we erase the blue lines we get  frg = Xrg + v



e Adding up such formulas, we find
fbg + f'rg + fb’r — z(fb -+ fg -+ f'r) — Xbg + Xbr —I—Xfrg + 3v

The total number of index loops is

ftotal—fb+fg+fr——+3 Gbg — Gor — Grg

The genus of a graph is ¢=1-x/2

Since g¢>o0, for a “maximal graph” which
dominates at large N all its subgraphs must
have genus zero:  fiota = 3 + 3v/2

Scales as j\?fg('gj\:?:?)XQ)'U

In the 3-tensor models \ = gN?/? must be
held fixed in the large N limit.



The Sachdev-Ye-Kitaev Model

* Quantum mechanics of a large number N, of

anti-commuting variables with action

1 d .q/9 ,
1 = /df ()Z ngs 1 Jivia. g Vi 2'““:@)

)

e Random couplings j have a Gaussian
distribution with zero mean.

* The model flows to strong coupling and
becomes nearly conformal. ceorges, Parcollet, sachdey;

Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon;

Kitaev, Suh



 The simplest interesting case is q=4.

* Exactly solvable in the large N, limit because
only the melon Feynman diagrams contribute

N N SN . TN Y
+ % % NEPZEEEN

— \ — ' — ] \ —

* Solid lines are fermion propagators, while
dashed lines mean disorder average.

e The exact solution shows resemblance with
physics of certain two-dimensional black
hOleS. Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang;

Engelsoy, Merten, Verlinde; Jensen; Kitaey, Suh; ...



* Spectrum for a single realization of N,,=32
mOdEI Wlth q=4 Maldacena, Stanford

 No exact degeneracies, but the gaps are
exponentially small. Large low T entropy.

400 Eigenvalues for N=32, plotted with 300 bins
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SYK-Like Tensor Quantum Mechanics

e E. Witten, “An SYK-Like Model Without
Disorder,” arXiv: 1610.09758.

 Appeared on the evening of Halloween:
October 31, 2016.

e [tis sometimes tempting to change the term
“melon diagrams” to “pumpkin diagrams.”



The Gurau-Witten Model

 This model is called “colored” in the random
tensor literature because the anti-commuting 3-
tensor fields ’(,Zf){ilbc carry a label A=0,1,2,3.

_ Ib ab 1b .-;11’ fbf’ fde
SGurau—‘ﬁ-‘Titten — \/df(z ) (()f “+ ":)” Do We W3 )

 Perhaps more natural to call it "flavored.”

e The model has O(NN)® symmetry with each
tensor in a tri-fundamental under a different
subset of the six symmetry groups.

e Contains 4N3 Majorana fermions.



e The 4 different fields may be associated with 4
vertices of a tetrahedron, and the 6 edges

correspond to the difufagerent symmetry groups:
1

e As stressed by Witten, it may be advantageous
to gauge the SO(N)® symmetry.

e This makes it a candidate gauge/gravity
correspondence.



The O(N)? Model

e A pruned version: there are N3 Majorana
fermions IK, Tarnopolsky

, TN 3
{L‘abc‘ L.Iﬂ b C } — {k)ﬂ-ﬂ- {5) bb {EJCL

H — g@, abe /C Lab’e "@ha"bc"ﬁ}a"b’c 7\&1
4 16

e Has O(N) XO(N), xO(N)_symmetry under
0 — MY M Mg© ™", My, My, Mz € O(N)
. The SO(N) symmetry charges are

i

(Q.glm’ _ %[t_abc. " a"bc*] . (ng" _ %[t_abc. " ab"c] . {g%c" _ —['E‘_;""a'bc_ W)
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e The 3-tensors may be
associated with

indistinguishable vertices
of a tetrahedron.

aibicy
e This is equivalent to
. . Cobaz
 The triple-line Feynman
graphs are produced E E

using the propagator



O(N)3 vs. SYK Model

e Using composite indices I, = (abicy)

|
H:4_!J[1[2[3[4w ltU lllj l’”

The couplings take values 0,+1
Jh hizly — 5{..*1(!3 5{;‘3{!4 5€J]b3 55)2[?4 5(‘1.:‘4 5{:‘3(‘3 - 5:11@ 5{;3u4 6[)2b3 55)11)4 5("2(‘4 6(:'1('3 + 22 terms
e The number of distinct terms is

1
Z 111121114 —NQ’(N —1)*(N+2)
{fk}

e Much smaller than in SYK model with ~Ngyx = N3

1 3 3
SV IV =DV =2)(V - 3)



Schwinger-Dyson Equations

e Some are the same as in the SYK model «itaev;

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; Kitaev, Suh

G(ty — ta) = Go(t1 — t2) + g*°N? / dtdt'Go(t; — t)G(t — )Gt —t,)

—@e

* Neglecting the left-hand side in IR we find

_O_ =

1 )1/‘4 sgn(tl — tg)

G(t1 —t2) = _(47Tg2N3 [t — to]1/2



* Four point function

(@010 (1 )9 MO0 (1)) %2220 (£3)4h®2%2%2 (84)) = NOG(t12)G(ta4) + T'(ty, - - -, ty)

t1

ts O
.m0

tH—Q—13
e If we denote by 1, the ladder with n rungs
I'=> T,

Fn+1(t1, c ey t4) — / dtdt,K(tl, tQ, t, t,)Fn(t, t,, t3, t4)

K(th tg; t3, t4) = —3g2N3G(t13)G(t24)G(t34)2



Spectrum of two-particle operators
e S-D equation for the three-point function cross,

Rosenhaus

thtlatQ _g dtSdt4K t15t27t35t4 t05t33t4

v(to, t1,t2) = <Og(t0)¢%c(t1)¢“bc(t2)) _ sgn(ty — t2)

[to — 1P|t — ta|P|tr — to|V/2H

e Scaling dimensions of operators 0Oj = ¢*°(D}y)**

3tan(3(h — 3))

g(h) = —=

— 1
2 h—1/2




* The first solution is h=2; dual to dilaton gravity.

g(h)
3|
i y=g(h)
2} ————— y=1
; h=2 h=3.77 h=5.68
J SN T - J—— S 7 9 --
: . h
I 2 4 6 8
_1}

 The higher scaling dimensions are
h~ 3.77, 5.68, 7.63, 9.60approaching h, - n+3



Gauge Invariant Operators

e Bilinear operators related by the EOM to some
of the hlgher partlcle smgle sum” operators.

0.0 .0 0.0

Ototrs OI”'1 o

e All the 6-part|cle @
operators vanish by

the Fermi statistics in @
the theory of one

&
o O
&

Majorana tensor

@@@



 The bubbles come from O(N) charges and
vanish in the gauged model:

|
|
|

(Jlil 13 {J; 1] Lf'?:ill']

e The 17 single-sum 8-bartic|e opefators which
do not include bubble insertions are

X

)
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Factorial Growth

There are 24 bubble-free 10-particle; 617 12-
particle; 4887 14-particle; 82466 16-particle
operators; etc.

The number of (2k)-particle operators grows
dasSsym ptOtlca”y as k! 2k. Bulycheva, IK, Milekhin, Tarnopolsky

The Hagedorn temperature of the large N
theory vanishes as 1/log N.

The tensor models seem to lie “beyond string
theory.”

Are they related to M-theory?



Spectra of Energy Eigenstates

 Generalize the Majorana tensor model to have
O(Ny) x O(Ny) x O(N3) symmetry
 The traceless Hamiltonian is

g_._b__._b!_.'_. 'be! 1 a'b g.TITIT - . .
H — 1'?_;'.1'51 ":'-L-';ﬁ c E'_;"!-a o 1_1'3’ c E:\I:\Q;\?}(*\l —_ ;\2 _I_ _:\‘3}

{E;.-'_.abc_ _E:.‘a."b”c”} _ 5&{1"556’ 5:1“.{'.’
e The Hilbert space has dimension 2/"t"24s/2

e Eigenstates of H form irreducible
representations of the symmetry.



Complete Diagonalizations

e Generally possible only for small ranks. krishnan,

Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts,
Stanford, Tarnopolsky

e For exam ple IK, Milekhin, Popov, Tarnopolsky

15000

10000

T

degeneracy

[4))
o
o
o o
T
*
e

1IN

-80 -60 -40 -20 0 20 40 60 80
4E/g

Figure 1: Spectrum of the O(4)? x O(2) model. There are four singlet states, and the stars

mark their energies, il()g and ihlg



* Spectra for N,=2

e For the O(2)3 model
only two singlets at
energies -2g and 2g.

(Ni.Ny) [ (22)]@23)] 33)[(24) ] (34) | (44)
iEdegeneracy -81 -139 | 206 | -244 -34¢ -644
Og | 76 | -1618 | -162 | -2894 | -4855
81 -39 | 1216 | -1216 | -24s | -40106
“log | -8go | -8a3 | -227 | -36956
log | -dyo | -d16 | -2040 | -32s10
32 | Oxgs | O1a0 | -1814 | -28956
76 dgg | 416 | -16159 | -243950
139 | 860 | 8oz | -1416s | ~201004
1216 1216 —1240 _164985
1615 | 169 | -10170 | 123079
206 | 241 | -Soso | -Ssomo
G104 | -43584
-d3g4 | O1o874
-2970 | 43584
U248 | Sgo32
2600 | 123072
d3gs | 164985
676 | 201024
8312 | 243250
10516 | 28956
1435 | 32810
16128 | 30256
18168 | 40106
s | 485
2619 64,
2894
30g

38,




Energy Bounds

The bound on the singlet ground state energy
IK, Milekhin, Popov, Tarnopolsky

0 - . ,
|E| S Ebau.nd. — 1—16:\3(:\ + 2)

In the melonic limit, this correctly scales as N3.

The gap to the lowest non-singlet state scales
as 1/N.

For unequal ranks the bound is

|E|<_6.\ 1 NaNg(NiNoN3 + N2 + N2 + N2 — 4)1/2



A Fermionic Matrix Model

* For N;=2 the bound simplifies to
( T T T -
1Bl Ny= < é\H No(N1 + Ny)

e Saturated by the ground state.
 This is a fermionic matrix model with symmetry

O(N}) x O(Ny) x U(1)
?_, L ( abl 4+ “ ab?) ?,-*"'f"‘ab = (-‘3;,!&51 o "E‘.-"?:i'i-‘abg)

Fab — \/j

{E ab ?; a’b’ } — {?.-*'{I’!abr '?.-*':jl"‘a’b" } — 0 {?; abs T.-*"i!r_l’b" } haa" {I)



e The traceless Hamiltonian is

97 9 xr AT /AT AT
H = E ('f— 'abWab Va'bWa'ty — VabWa'bWab' U ‘a"b") + ;:\1:\2(:\2 — :\lj
.

e May be expressed in terms of quadratic
Casimirs

( STT(N Sy N 7y N, 2 _ - l _ _ - -
—% (4(*;{ (N1 _ o) 4 oF0N2) ﬁQ? +(Va = N)Q = [ NiNp(N + m)

SU(Ny) x SU(Nz) is not a symmetry here but a
spectrum generating algebra.

* Forall N;, N,, the energy levels are integers in
units of g/4.



Gauge Singlets

 To eliminate large degeneracies, focus on the
states invariant under SO(N;) x SO(Ny) x SO(N3)

 Their number can be found by gauging the

free theor o . .
Y L=¢"ou" + o' Ay’

A=A'2101+1A2%21+1 1 A®

M/2
“singlet states = /d)\;\}r H 2cos(N,/2)
a=1

T

2 2
. T; — I _ T; + x;
dAso(2n) = H sin 5 sin 5 dry . ..dz,

i< - -




Gauge Singlets in the O(N)3 Model

e Their number vanishes for odd N due to a QM
anomaly for odd numbers of flavors.

e Grows very rapidly for even N

N | # singlet states
2 2

4 36

§ 595354780

Table 1: Number of singlet states in the O(N)? model

N3 3\2
#singlet states ~ exp (7 log

1wm+om))

 The large low-temperature entropv suggests
tiny gaps for singlet excitations ~ ¢



Qubit Hamiltonian

 Convenient to introduce operator basis which
breaks the third O(N) to U(N/2)

i (L.-j]a-b(%’i N i?;g,a-b(%jtl)) , i SRR :,.-]a.b(i}k{—l)) ,

Cable = Cable = 21
bk \/§ . bk \/5 ( .

{Caties Cavrir } = {Cabir Caovir } = 0. {Cabes Carv'ir } = Oaar Ovtr Ot

a,b =0,1,..., N —1, and k = O,...,%N — 1
e Operators cur Car  correspond to qubit
number N2k 4+ Nb+a

 The Hamiltonian couples N/2 sets of N? qubits

H = 2(CapheCabri Carbhs Carty e — CabkCarbk! Caby k' Carty )



The Cartan generators of U(N/2) are

1. 1
Qk — Zi{cabkzcabk} ) k= O§IV_ 1
a,b
For the oscillator vaccuum
N?
Cabk |[Vac) = 0, Q. |[vac) = oy vac)

The gauge singlet states appear in the sector
where all these charges vanish: each set of N?
qubits is at

This reduces the number of states but it still
grows rapidly. For N=4 there are 165636900,
while for N=6 over 7.47 * 10729



Spectrum of the Gauged N=4 Model
Studied the system of 32=16+16 qubits

IK, K. Pakrouski, F. Popov and G. Tarnopolsky

Needed to isolate the 36 states invariant under
SO(4)3 out of the 165080390 “half-half-filled”
states.

Diagonalize 4H/g + 100 C where C is the sum of
three Casimir operators.

A Lanczos type algorithm is well suited for this
sparse operator.

Find 15 distinct SO(4)3 invariant energy levels:
E=0 and 7 “mirror pairs” (E, -E).



Discrete Symmetries

Act within the SO(N)3 invariant sector and can
lead to small degeneracies.

Z, parity transformation within each group like

) 1be 1be

— —U
Interchanges of the groups flip the energy

PQ 3.?;_.;,(156 PQB _ '?;;"{mb ‘ PlQ'?__-‘i' abe Plg — b bac

PysH Py =—H . PoHPy=—-H

Z, symmetry generated by P = P3P, PP =
P_t.-;,abc PT _ _t_-;,cub ‘ PH PT — g



* At non-zero energy the gauge singlet states
transform under the group A, x Z,

e The 36 states are labeled by E and the three

parities E P[P [R] E [AlB[D

—160.140170 | 1 1 1 ] 160.140170 | 1 1 1
—97.019491 1 1| -1 7.0194¢ ' '
)

9 )1 1 1] -1
—97.019491 | -1 ] 1 I ] 97019491 | —1 | 1 1
—97.019491 | 1 | —1| 1 | 97.019491 -1 1
—88.724292 | —1 | =1 | =1 | 88.724292 | —1 | -1 | —1

—54.434603 | 1 1 1 | 54.434603 1 1 1
—50.549167 | 1 1 | —11] 50.549167 | 1 1] -1
—50.549167 | —1| 1 L ] 50.549167 | =1 | 1 1
—50.549167 | 1 | =1 | 1 | 50.549167 | 1 | —=1] 1
—39.191836 | 1 1 L] 39.191836 1 1 1
—39.191836 | 1 1 1 ] 39.191836 1 1 1

—38.366652 1 | —1]—1] 38.366652 1| —-1]-1
—38.366652 | —1 | 1 | —1| 38.366652 | —1| 1 | —1
—38.366652 | —1 | —1 | 1 38.366652 | —1 | —1] 1
0.000000 1 1 1 0.000000 | —1 | —1] —1
0.000000 -1 1 1 0.000000 | —=1] -1
0.000000 1 | -1 1 0.000000 | -1 1 | —1
0.000000 1 1 | —11] 0.000000 | —1|—-1] 1




Energy Distribution for N=4

8L

degeneracy
IN o)

(]
T T T

otl . 1 N O B 1 i

-150 -100 =50 0 20 100 130

e For N=6 there will be over 595 million states
packed into energy interval <1932. So, the
gaps will be tiny.



Exact Eigenvalues

The maximum degeneracy at non-zero energy
Is 3.

The results were so precise that they allowed
us to deduce the exact expressions in terms of
square root.

The ground state is non-degenerate and has
energy in units of g/4

B, = —\/32 (447 + +/125601)

It is not far from our lower bound -166.277



Complex Tensor Model

e The action

q — /dt (i@abcatwabc 4+ %gwalbml,@albzczwazbmz&azbzq)
has SU(N)xO(N)xSU(N)xU(1) symmetry.

IK, Tarnopolsky

* Gauge invariant two-particle operators
Oy = ™ (Dfp)™  n=0,1,...

including  qabeqabe



Spectrum of two-particle operators

 The integral equation also admits symmetric

solutions 1
’U(tlptZ) |t1 . t2|1/2 h

e Calculating the integrals we get

1 N 1’[111( (h+ 3 5))
Gsym () = _—!——h lz1 hE T2 h— 1/2

47

* The first solution is h=1 corresponding to U(1)
Charge ,&abcwabc



g(n), Geym(N)
4F

 The additional scaling dimensions
h a 2.65, 4.58, 6.55, 8.54

| |
mn




Sachdev-Ye-Kitaev Model

O(N)3 Tensor Model

N
1
H = I Z Ji1z’2’i3i4Xi1 Xia Xisz Xiq

) 7:17?:2:1.'337:4:1
 Majorana fermions {X:, x;} = di;

o Jiigigiy are Gaussian random

J2
=3lo5 (Jinigigia) =0
e Has O(Ngyx) symmetry after

averaging over disorder

(Jiyizisia)

111213174

Sachdev, Ye ‘93,
Georges, Parcollet, Sachdev’01
Kitaev ‘15

1 J
H = Z E WXalblcl)(mbgcz Xaabica Xagbacy
1

Majorana fermions

{Xa,bc: Xa'b'c! } — 50,0,’ 5bb’ 5(:(:’

No disorder

Has O(N), x O(N), x O(N). symmetry

Xaibicy

IK, Tarnopolsky’16



Gross-Rosenhaus Model
q=4, =4

Gurau-Witten Model

N
o § : 0.1.2._.3
H — Ji1’i2’i3’i4Xi1X‘i2X’i3Xi4

11,42,13,24=1

* Majorana fermions{x¢, x5} = 6;;6*

o Jiigigiy are Gaussian random

(JZiinin) = 4 — (Jirigizia) = 0

11121374 N3

* Has O(Ngyy) X O(Nsy) X
symmetry

*  O(Ngyk) X

Gross, Rosenhaus’ 16

N

J oo
H = Z WxachadeX?'beX?dc
a,....f=1

Majorana fermions

{Xﬁbca ngfc’} — 5aa" 5bb’ 560’ 5AB

No disorder

Has O(N), x O(N), x O(N). x
X O(N), x O(N); symmetry

1
X ade

Gurau ‘10
X3oc Witten’16




Complex SYK Model

Complex Tensor Model

N
1
H=—1 D Juiisith XXX

7:137:232.3’7:4:1

» Complex fermions {X, x|} = &;

o Jiigigiy are Gaussian random

2 J?
J — S!W <Ji1i2i3’i4> =0
e Has U(Ngy k) symmetry after
averaging over disorder

(J

’1,17;2?:3?:4>

Sachdev ’15
Davison, Fu, Gu, Georges, Jensen, Sachdev ‘16

H

N
1 Z J oy -
- i N3/2 Xazbic1 Xagboey Xarbzez Xazbica

A geney co=1
Complex fermions

{Xabca Xl,fb'c'} - 5&@’ 5bb’ 50{:’

Has SU(N), x SU(N),x O(N), x U(1)
symmetry and no disorder

1.
Xa1b101

IK, GT’16




 The vector and matrix large N limits have been
used extensively for many years in various
theoretical physics problems.

e The arge N limits for rank 3 and higher
are relatively new.

 The O(N)3 fermionic tensor quantum
mechanics seems to be the closest
counterpart of the basic SYK model for
Majorana fermions. Yet, there are some
important differences between the two.



e Gauging the SO(N)3 symmetry leaves
interesting spectra of operators and
eigenstates.

 Found the complete spectrum of the gauged
N=4 model, where there are 36 states.

* Energy gaps should become very small already
for N=6, where there are over 595 million
states.



* VVector: CFTs are dual to higher spin quantum
gravity in AdS; e.g. the O(N) Wilson-Fisher Model
coupled to Chern-Simons is dual to the Vasiliev
theory in AdS,. One Regge trajectory.

* Matrix: N=4 Super-Yang-Mills is dual string theory

on AdS; x S°. An infinite number of Regge
trajectories.

* Tensor: Vastly more operators than in the matrix
case. Hagedorn temperature vanishes for large N.

What quantum gravity theories are they dual to?
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