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Low dimensional holography

SYK model      ßà 2D dilaton gravity

3D  AdS gravity    ßà 2D  CFT 

Both gravity models are exactly solvable!

�in(t2)�out(t1) = eih̄e
�(t2�t1)@1@2�out(t1)�in(t2)

t̃0 � t0 ' 1

�
e�(t�t0�tr)

S2D =
Z
d2x

p
�g �(R + ⇤) + Smatter

S3D =
Z
d3x

p
�g (R + ⇤) + Smatter
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Figure 2: In (a) we see the full AdS2 space. In (b) we cut it o↵ at the location of a
boundary curve. In (c) we choose a more general boundary curve. The full geometry of
the cutout space does depend on the choice of the boundary curve. On the other hand,
the geometry of this cutout region remains the same if we displace it or rotate it by an
SL(2) transformation of the original AdS2 space.

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of
di↵erent interior geometries is given by the set of all functions t(u) up to the above SL(2)
transformations. (Or modded out by these SL(2) transformations (2.5)).

It is worth noting that we can also look at the asymptotic symmetries of AdS2. They
are generated by reparametrizations of the asymptotic form

⇣t = "(t), ⇣z = z"0(t) (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u
to t(u) = u+ "(u).

If we insert these geometries into the action (2.3) the Gauss-Bonnet theorem implies
that we always get the same action, namely the extremal entropy. Thus we have a set of
exact zero modes parametrized by t(u) (up to the SL(2) identification (2.5)).

Notice that, near the boundary, the geometries are indistinguishable, we need to go
through the bulk in order to distinguish them. In fact, this is the realization of the full
reparametrization symmetry that we expect in this problem. In other words, we expect
that SL(2) is enhanced to a full Virasoro like symmetry, which in this case, are just the
reparametrization symmetries. However, the reparametrization symmetry is spontaneously
broken by AdS2. It is broken to SL(2, R). The zero modes are characterized by the
functions t(u). These can be viewed as Goldstone bosons. Except that here we consider
them in the Euclidean problem. We can call these zero modes “boundary gravitons”.
They are similar to the ones that appear in three dimensions. An important di↵erence
with the three dimensional case is that, here, these modes have precisely zero action in the
confromal limit, there is no local conformal invariant action we can write down for them.
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Using this free propagator we can then compute corrections due to the interaction. Let
us look at the first correction to the two point function, shown in figure 1. This arises
by bringing down two insertions of the interaction Hamiltonian and then averaging with
respect to the disorder. The disorder average is represented by a dotted line in figure 1. As
pointed out in [19], we can sometimes reproduce similar diagrams by considering ji1,··· ,iq to
be a dynamical field. Here we will stick to the disordered model. The disorder average links
the indices appearing in the two interaction Hamiltonians and we end up with a correction
that scales as J2 relative to the free two point function, with no additional factors of N ,
since we get (q � 1) factors of N from the sum over the indices of the intermediate lines.

+ + + +

Figure 1: Diagrams representing corrections to the two point function, for the q = 4 case.
The free two point function is given by the straight line. The first correction involves also
an average over disorder, which is represented by a dashed line. We have also indicated a
couple more diagrams that also contribute at leading order in N .

= + + +

=

Figure 2: Equations that define the summation of the leading large N contributions, for
the q = 4 case. The solid circle represents the one particle irreducible contributions. The
dotted circle represents the full two point function. This is a graphical representation of
the equations in (2.6).

Besides this first diagram, there are many more “iterated watermelon” diagrams that
contribute at leading order in N . Two more are shown in figure 1. The set of diagrams
is su�ciently simple that they can be summed by writing self consistency equations for
the sum. First, it is convenient to define a self energy, ⌃(⌧, ⌧ 0), which includes all the one
particle irreducible contributions to the propagator. By translation symmetry, ⌃(⌧, ⌧ 0) =

9

3.1 Definition
The SYK model is defined as having a Hamiltonian

H =
X

ijk`

Jijk` 
i
 

j
 

k
 

`
, (18)

where Jijk` are drawn from a normal distribution. The operators obey the anticommutation
relations

{ i
, 

j} = �
ij
. (19)

3.2 Initial Calculations

3.3 Large N Limit

3.4 Supersymmetry
The discussion of the supersymmetric models comes from reference [1]. In the supersym-

metric generalization, the Hamiltonian is written in terms of the supercharge

Q = i

X

i<j<k

Cijk 
i
 

j
 

k
, (20)

where Cijk are now drawn from a Gaussian with mean 0 and variance 2J/N2. Because the
 operators are antisymmetric, the other components of C may be chosen so that C is also
antisymmetric. In this case

Q =
i

6

X

ijk

Cijk 
i
 

j
 

k
, (21)

with the indices no longer necessarily ordered.
The Hamiltonian is defined as

H = Q
2 = �

X

i<j<k

Cijk 
i
 

j
 

k
X

`<m<n

C`mn 
`
 

m
 

n
. (22)

For those terms where (i, j, k) = (`,m, n), the sum becomes

X

i<j<k

C
2
ijk
 

i
 

j
 

k
 

i
 

j
 

k =
1

8

X

i<j<k

C
2
ijk

(23)

Eventually5 the Hamiltonian becomes

H = E0 +
X

i<j<k<`

Jijk` 
i
 

j
 

k
k 

`
, (24)
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SYK model  = 1D many body QM with maximal chaos

random couplings N majorana variables

Large N limit of SD equations = soluble

Dominated by `pumpkinic’ diagrams

7 Concluding Remarks

In this paper we have studied in detail the correlators in the Schwarzian / Jackiw-Teitelboim

theory. Our analysis was based on the exact formulas found in [20] for these quantities. In

particular, we have verified (in the semiclassical limit) the proposal put forward in [20] that the

R-matrix, given by the 6j-symbols of SL(2,R), controls the out-of-time-ordered correlators of the

Schwarzian theory and also correspond to the gravitational S-matrix in the 2d Jackiw-Teitelboim

gravity theory. This resonates with the ideas put forward in [4] for the case of 3d gravity.

As a side comment, in this paper we have focused on the semiclassical limit of large 2⇡C/�

from the perspective of the non-perturbative expressions. We have also taken time di↵erences

between operators insertions to be large but smaller than C. When t � C quantum e↵ects

become important and correlation functions, even OTO, go to power laws with di↵erent exponents

[23] [20]. It would be interesting to understand this cross-over from a bulk perspective.

We would like to conclude by describing an interesting open problem that we leave for future

work. In this paper we have analyzed di↵erent semiclassical limits of the exact correlators of the

Schwarzian theory [20]. These results have been obtained as a certain limit of 2d Liouville CFT.

In this section we want to raise some points that give a new perspective on this approach.

The Schwarzian theory arises as the low energy limit of holographic quantum mechanical models

[6]. The main example is the SYK model of N Majorana fermions  i with Hamiltonian

H = iq/2
X

ji1...iq i1 . . . iq , (7.1)

where the disorder average over couplings j is described by

hj21...qi = J 2
2q�1(q � 1)!

qN q�1
. (7.2)

As explained in [6] one can reformulate this theory and go from a path integral over  and j to

a mean field formulation with fundamental fields G(⌧1, ⌧2) and ⌃(⌧1, ⌧2). The former is identified

with

G(⌧1, ⌧2) ⌘
1

N

X

i

h i(⌧1) i(⌧2)i, (7.3)

and the latter with the self-energy. Fermion correlators can then be replaced by correlators of this

bilocal mean field G(⌧1, ⌧2), integrated over with a semiclassical action [11]

� SE/N =
1

2
Tr log (@⌧ � ⌃)� 1

2

Z
d⌧1d⌧2


⌃(⌧1, ⌧2)G(⌧1, ⌧2)�

J 2

q2
G(⌧1, ⌧2)

q

�
. (7.4)

Analyzing the saddle point equations associated to this action one can find that in the strong cou-

pling limit of large �J the two-point function becomes G(⌧1, ⌧2) ⇠ |⌧12|�2� with scaling dimension

� = 1/q. We will focus now on the large q limit. This means we can approximate the bilocal field

in the following way up to 1/q corrections

G(⌧1, ⌧2) =
sgn(⌧12)

2
e��g(⌧1,⌧2) =

sgn(⌧12)

2

✓
1 +

1

q
g(⌧1, ⌧2)

◆
, (7.5)
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and study the dynamics of g(⌧1, ⌧2). On-shell the self-energy is also given in terms of g(⌧1, ⌧2)

as ⌃ ⇠ J 2eg(⌧1,⌧2)/q2. Since we are interested in fermion correlators that can be obtained from

correlators of the bilocal field g(⌧1, ⌧2) one can integrate first over ⌃. This can be done in the large

q limit to obtain an e↵ective action for g. This was done in [11, 13, 48] giving

Se↵ =
N

8q2

Z
d⌧1d⌧2

⇥
@⌧1g@⌧2g � 4J 2 exp g(⌧1, ⌧2)

⇤
. (7.6)

It was also noted that this is precisely the Liouville action for g(⌧1, ⌧2). This bilocal action from

the point of view of the original quantum mechanical system becomes local in the two dimensional

kinematic space (⌧1, ⌧2). These two parameters behave like null coordinates in the 2d space (x0, x1)

such that z = ⌧1 = �x0 + x1, z̄ = ⌧2 = x0 + x1 and g(⌧1, ⌧2) ! g(z, z̄). Then we can use this

relabeling to write the action as a 2d theory for a scalar field g

Se↵ =
N

8q2

Z
d2z

⇥
@g@̄g � 4J 2 exp g

⇤
. (7.7)

We should compare this with standard Liouville CFT. Liouville theory with a cosmological constant

µ and central charge as c = 1+6(b+1/b)2 is described by the action SL = 1

4⇡

R
d2z

⇥
@�@̄�+ 4⇡µe2b�

⇤
.

We will take the limit b ! 0 and therefore c = 6/b2. To make contact with the e↵ective

SYK-model action we change variables 2b� ! g. This turns the Liouville action into SL =
1

16⇡b2

R
d2z

⇥
@g@̄g + µ̂eg

⇤
, where µ̂ = 16⇡µb2 is finite in the b ! 0 limit. This allows us to iden-

tify the relevant parameters of the 2d CFT with the SYK mean field action. The renormalized

cosmological constant is µ̂ ⇠ J 2, and the central charge is given by

c =
12⇡N

q2
. (7.8)

Moreover, the bilocal field G ⇠ e�g precisely corresponds to a Liouville primary operator V� =

e2b��, which in the small b limit has conformal dimension � (for the specific value of small

� = 1/q). This allows us to relate the general correlators via

hG(⌧1, ⌧2) . . . G(⌧n�1, ⌧n)iSYK = hV�(z = ⌧1, z̄ = ⌧2) . . . V�(zn/2 = ⌧n�1, z̄n/2 = ⌧n)iLiouville,

as anticipated in [20].

There is a subtlety in the above discussion regarding boundary conditions. In the SYK context

the right boundary conditions are given by g(⌧1, ⌧2) ! 0 as ⌧12 ! 0. This is consistent with the

UV of the theory being described by the free fermion model. With this boundary conditions the

Liouville analysis would reproduce the full SYK correlators. Nevertheless this boundary condition

is not conformally invariant. This takes us away from the 2d CFT framework which has been so

useful to classify and compute in theories with boundaries.

If we stay within the holographic regime of large �J , then the situation simplifies. In this

case the correct boundary conditions become g(⌧1, ⌧2) ⇠ log ⌧12 as ⌧12 ! 0. This is an appropriate

prescription as long as ⌧12 is small but still bigger than 1/J . Ignoring the correction when the two
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at large q reduces to

Liouville CFT on kinematic space!
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gravity theory. This resonates with the ideas put forward in [4] for the case of 3d gravity.

As a side comment, in this paper we have focused on the semiclassical limit of large 2⇡C/�

from the perspective of the non-perturbative expressions. We have also taken time di↵erences

between operators insertions to be large but smaller than C. When t � C quantum e↵ects

become important and correlation functions, even OTO, go to power laws with di↵erent exponents

[23] [20]. It would be interesting to understand this cross-over from a bulk perspective.

We would like to conclude by describing an interesting open problem that we leave for future

work. In this paper we have analyzed di↵erent semiclassical limits of the exact correlators of the

Schwarzian theory [20]. These results have been obtained as a certain limit of 2d Liouville CFT.

In this section we want to raise some points that give a new perspective on this approach.

The Schwarzian theory arises as the low energy limit of holographic quantum mechanical models

[6]. The main example is the SYK model of N Majorana fermions  i with Hamiltonian

H = iq/2
X

ji1...iq i1 . . . iq , (7.1)

where the disorder average over couplings j is described by

hj21...qi = J 2
2q�1(q � 1)!

qN q�1
. (7.2)

As explained in [6] one can reformulate this theory and go from a path integral over  and j to

a mean field formulation with fundamental fields G(⌧1, ⌧2) and ⌃(⌧1, ⌧2). The former is identified

with

G(⌧1, ⌧2) ⌘
1

N

X

i

h i(⌧1) i(⌧2)i, (7.3)

and the latter with the self-energy. Fermion correlators can then be replaced by correlators of this

bilocal mean field G(⌧1, ⌧2), integrated over with a semiclassical action [11]

� SE/N =
1

2
Tr log (@⌧ � ⌃)� 1

2

Z
d⌧1d⌧2


⌃(⌧1, ⌧2)G(⌧1, ⌧2)�

J 2

q2
G(⌧1, ⌧2)

q

�
. (7.4)

Analyzing the saddle point equations associated to this action one can find that in the strong cou-

pling limit of large �J the two-point function becomes G(⌧1, ⌧2) ⇠ |⌧12|�2� with scaling dimension

� = 1/q. We will focus now on the large q limit. This means we can approximate the bilocal field

in the following way up to 1/q corrections

G(⌧1, ⌧2) =
sgn(⌧12)

2
e��g(⌧1,⌧2) =

sgn(⌧12)

2

✓
1 +

1

q
g(⌧1, ⌧2)

◆
, (7.5)
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⌃(⌧ � ⌧ 0) and we can write the full two point function, and the definition of ⌃ as

1

G(!)
= �i! � ⌃(!) , ⌃(⌧) = J2 [G(⌧)]q�1 (2.6)

Notice that the first equation is written in frequency space while the second in the original
(Euclidean) time coordinate. Here we have assumed translation symmetry. The possible
values of the frequency depend on whether we are at � = 1, where it is continuous, or
at finite � where we have ! = 2⇡

�
(n + 1

2). When we talk about zero temperature, we are
imagining taking the large N limit first and then the zero temperature limit.

As a side comment, note that we could consider a model with a Hamiltonian which is
a sum of terms with various q’s, and with random couplings with their own variance Jq.
The large N equations for such models would be very similar except that the right hand
side of (2.6) would be replaced by ⌃ =

P
q
J2
q
[G(⌧)]q�1. But we did not find any good use

for this.

2.3 The conformal limit

At strong coupling, the first equation in (2.6) can be approximated by ignoring the first
term on the right hand side. It is convenient to write these approximate equations as

Z
d⌧ 0G(⌧, ⌧ 0)⌃(⌧ 0, ⌧ 00) = ��(⌧ � ⌧ 00) , ⌃(⌧, ⌧ 0) = J2 [G(⌧, ⌧ 0)]q�1 (2.7)

Written in this form, they are invariant under reparametrizations,

G(⌧, ⌧ 0) ! [f 0(⌧)f 0(⌧ 0)]� G(f(⌧), f(⌧ 0)) , ⌃(⌧, ⌧ 0) ! [f 0(⌧)f 0(⌧ 0)]�(q�1) ⌃(f(⌧), f(⌧ 0))
(2.8)

provided that � = 1/q.
We can then use an ansatz of the form

Gc(⌧) =
b

|⌧ |2� sgn(⌧), or Gc(⌧) = b

"
⇡

� sin ⇡⌧

�

#2�

sgn(⌧) (2.9)

where we have given also the finite temperature version, which follows from (2.8) with
f(⌧) = tan ⌧⇡

�
. We can determine b by inserting these expressions into the simplified

equations and obtain

J2bq⇡ =

✓
1

2
��

◆
tan ⇡� , � =

1

q
(2.10)

We will use � and 1/q interchangeably below. To derive the first equation here, it is
convenient to use the Fourier transform

Z 1

�1
d⌧ei!⌧

sgn(⌧)

|⌧ |2� = i 21�2�
p
⇡
�(1��)

�(12 +�)
|!|2��1sgn(w) (2.11)
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1 Introduction: Schwarzian QM

In the past few years it has been recognized that holographic CFTs at finite temperature
exhibit characteristics of many body quantum chaos [1, 2, 3, 4, 5]. The SYK model is
a soluble many body quantum system with a well-controlled large N limit that exhibits
maximal chaos and other characteristics that indicate it has a holographic dual given by a 2D
gravity theory on AdS2 [2, 6, 7, 8, 9, 10, 11]. The Schwarzian theory describes the quantum
dynamics of a single 1D degree of freedom f(⌧) and forms the theoretical gateway between
the microscopic SYK model and the dual 2D dilaton gravity theory [12, 13, 14, 15, 16].

In this paper we will study the finite temperature correlation functions in the 1D quan-
tum mechanical theory described by the action

S[f ] = �C

Z
�

0

d⌧

✓�
f, ⌧

 
+

2⇡2

�2
f 02

◆
(1.1)

= �C

Z
�

0

d⌧
�

F, ⌧
 
, F ⌘ tan

✓
⇡f(⌧)

�

◆
, (1.2)

where C is the coupling constant of the zero-temperature theory. We will set C = 1/2 from
here on out, unless explicitly stated. Here f(⌧ + �) = f(⌧) + � runs over the space Di↵(S1)
of di↵eomorphisms on the thermal circle, and

�
f, ⌧

 
=

f 000

f 0 �
3

2

✓
f 00

f 0

◆2

(1.3)

denotes the Schwarzian derivative.

The action S[f ] is invariant under SL(2, R) Möbius transformations that act on F via

F !
aF + b

cF + d
. (1.4)

The model possesses a corresponding set of conserved charges `a that generate the sl(2, R)
algebra [`a, `b] = i✏abc`c and commute with the Hamiltonian H. In fact, as reviewed in
section 2, the Hamiltonian H is found to be equal to the SL(2, R) Casimir, H = 1

2`a`a. The
energy spectrum and dynamics are thus uniquely determined by the SL(2, R) symmetry.
The Schwarzian theory is integrable and expected to be exactly soluble at any value of the
inverse temperature �. In the following, we will label the energy eigenvalues E in terms of
the SL(2, R) spin j = �

1
2 + ik via

E(k) = �j(j + 1) =
1

4
+ k2. (1.5)
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F !
aF + b

cF + d
. (1.4)

The model possesses a corresponding set of conserved charges `a that generate the sl(2, R)
algebra [`a, `b] = i✏abc`c and commute with the Hamiltonian H. In fact, as reviewed in
section 2, the Hamiltonian H is found to be equal to the SL(2, R) Casimir, H = 1

2`a`a. The
energy spectrum and dynamics are thus uniquely determined by the SL(2, R) symmetry.
The Schwarzian theory is integrable and expected to be exactly soluble at any value of the
inverse temperature �. In the following, we will label the energy eigenvalues E in terms of
the SL(2, R) spin j = �

1
2 + ik via

E(k) = �j(j + 1) =
1

4
+ k2. (1.5)

2

1 Introduction: Schwarzian QM

In the past few years it has been recognized that holographic CFTs at finite temperature
exhibit characteristics of many body quantum chaos [1, 2, 3, 4, 5]. The SYK model is
a soluble many body quantum system with a well-controlled large N limit that exhibits
maximal chaos and other characteristics that indicate it has a holographic dual given by a 2D
gravity theory on AdS2 [2, 6, 7, 8, 9, 10, 11]. The Schwarzian theory describes the quantum
dynamics of a single 1D degree of freedom f(⌧) and forms the theoretical gateway between
the microscopic SYK model and the dual 2D dilaton gravity theory [12, 13, 14, 15, 16].

In this paper we will study the finite temperature correlation functions in the 1D quan-
tum mechanical theory described by the action

S[f ] = �C

Z
�

0

d⌧

✓�
f, ⌧

 
+

2⇡2

�2
f 02

◆
(1.1)

= �C

Z
�

0

d⌧
�

F, ⌧
 
, F ⌘ tan

✓
⇡f(⌧)

�

◆
, (1.2)

where C is the coupling constant of the zero-temperature theory. We will set C = 1/2 from
here on out, unless explicitly stated. Here f(⌧ + �) = f(⌧) + � runs over the space Di↵(S1)
of di↵eomorphisms on the thermal circle, and

�
f, ⌧

 
=

f 000

f 0 �
3

2

✓
f 00

f 0

◆2

(1.3)

denotes the Schwarzian derivative.

The action S[f ] is invariant under SL(2, R) Möbius transformations that act on F via
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in Appendix B. The Wilson function was introduced in [27], where it was shown that the
above expression in fact coincides with the classical 6j-symbol of the Lie group SU(1, 1).

The appearance of the 6j-symbols in OTO correlation functions should not come as a
surprise. States and operators in the Schwarzian theory are specified by a representation
label of SL(2, R). The crossing kernel relates the OTO 4-point function with the correspond-
ing time-ordered amplitude. It thus applies an isomorphism between two di↵erent orderings
of taking a triple tensor product. The 6j-symbols satisfy some remarkable identities known
as the pentagon and hexagon identities. From the point of view of the Schwarzian the-
ory, these identities are consistency requirements that follow from locality, analyticity and
associativity of the operator algebra.

In a future paper, we intend to elaborate on the relation between the R-matrix of the
Schwarzian theory and the gravitational scattering amplitudes of the 2D Jackiw-Teitelbom
model. We will make some preliminary comments on this relation in section 5.3, where we
outline how our results can be used to exhibit the expected maximal Lyapunov growth of
the OTO correlation functions.

This concludes our overview of the explicit expressions of the correlation functions of
the Schwarzian theory. In the following sections, we will explain the method by which we
obtained these results. We also present a few more details of the derivations and perform
some non-trivial checks.

2 Schrödinger formulation

In this section, we outline the Hamiltonian formulation of the Schwarzian theory, and how
it is related to other 1D systems with SL(2, R) symmetry. We temporarily set � = 2⇡. The
reader familiar with the basic properties of Schwarzian QM can choose to skip this section.

2.1 Zero temperature

We first consider the Schwarzian theory at zero temperature. In this limit, the ḟ 2-term is
dropped in the action (1.1), reducing it to the pure Schwarzian action S =

R
d⌧ {f, ⌧}.2 To

transit to a Hamiltonian description, it is useful to recast the Lagrangian into a first order
form as

L = ⇡��̇ + ⇡f ḟ � (⇡2
�

+ ⇡fe
�). (2.1)

This first-order form makes clear that the Schwarzian theory has a four dimensional phase
space, labeled by two pairs of canonical variables (�, ⇡�) and (f, ⇡f ). Alternatively, we may

2Here, in this section only, we will write ḟ(⌧) instead of f 0(⌧).

9

Engelsoy, Mertens, HVCanonical formulation:

Particle)on)H3

1D)Liouville

Schwarzian

L = 1
2 �̇

2
� µe�

Integrate out ⌧̄ , ⇡̄f̄ = 1

L = 1
2 �̇
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�
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2 + ḟ ˙̄fe��

Integrate out ⇡̄f̄

L = 1
2 �̇

2 + ⇡f ḟ � ⇡fe�
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2 + ⇡f ḟ + ⇡̄f̄

˙̄f � ⇡f ⇡̄f̄e
�

Integrate out f , ⇡f = µ.

L =
�
f, ⌧

 

1 Introduction

2

L = 1
2 �̇

2
� µe�

Integrate out ⌧̄ , ⇡̄f̄ = 1

L = 1
2 �̇
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Figure 1: Overview of di↵erent models with underlying SL(2, R) symmetry. Red lines

indicate one-way lines: they are projections that reduce the dimension of the phase space.

view the quantity ⇡f as a Lagrange multiplier, enforcing the constraint ḟ = e�. Setting
� = log ḟ and integrating out ⇡�, it is readily seen that the above first-order Lagrangian
indeed reduces to the Schwarzian theory. Upon quantization, the variables satisfy canonical
commutation relations [f, ⇡f ] = i and [�, ⇡�] = i.

The invariance of the Schwarzian action under Möbius transformations

f !
af + b

cf + d
(2.2)

implies the presence of a set of conserved charges

`�1 = ⇡f , `0 = f⇡f + ⇡�, `1 = f 2⇡f + 2f⇡� + e�,

that satisfy an sl(2, R) algebra. The Hamiltonian H is equal to the quadratic Casimir

H = ⇡2
�

+ ⇡fe
� = `2

0 �
1
2{`�1, `1} (2.3)

and thus manifestly commutes with the SL(2, R) symmetry generators. In particular, we
can define a mutual eigenbasis of H and ⇡f = `�1

⇡f

���, k
↵

= �
���, k

↵
, H

���, k
↵

= E(k)
���, k

↵
, E(k) ⌘

1
4 + k2, (2.4)

which spans the complete Hilbert space of the theory.

The 1D Schwarzian theory is closely related to the free particle on the 3D Euclidean AdS
space H+

3 with coordinates (�, f, f̄) and metric ds2 = d�2 + 2e��dfdf̄ , and to 1D Liouville
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2 + ḟ ˙̄fe��

Integrate out ⇡̄f̄

L = 1
2 �̇

2 + ⇡f ḟ � ⇡fe�
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2 + ⇡f ḟ � ⇡fe�

Integrate out ⇡f

L = 1
2 �̇

2 + ⇡f ḟ + ⇡̄f̄
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2 + ⇡f ḟ � ⇡fe�

Integrate out ⇡f

L = 1
2 �̇

2 + ⇡f ḟ + ⇡̄f̄
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2 + ⇡f ḟ � ⇡fe�

Integrate out ⇡f

L = 1
2 �̇

2 + ⇡f ḟ + ⇡̄f̄
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2 + ⇡f ḟ + ⇡f̄

˙̄f � ⇡f⇡f̄e
�

Integrate out f̄ , ⇡f̄ = 1

1

Integrate out ⇡f̄

L = 1
2 �̇

2 + ⇡f ḟ + ⇡f̄
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view the quantity ⇡f as a Lagrange multiplier, enforcing the constraint ḟ = e�. Setting
� = log ḟ and integrating out ⇡�, it is readily seen that the above first-order Lagrangian
indeed reduces to the Schwarzian theory. Upon quantization, the variables satisfy canonical
commutation relations [f, ⇡f ] = i and [�, ⇡�] = i.

The invariance of the Schwarzian action under Möbius transformations

f !
af + b

cf + d
(2.2)

implies the presence of a set of conserved charges

`�1 = ⇡f , `0 = f⇡f + ⇡�, `1 = f 2⇡f + 2f⇡� + e�,

that satisfy an sl(2, R) algebra. The Hamiltonian H is equal to the quadratic Casimir

H = ⇡2
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+ ⇡fe
� = `2

0 �
1
2{`�1, `1} (2.3)

and thus manifestly commutes with the SL(2, R) symmetry generators. In particular, we
can define a mutual eigenbasis of H and ⇡f = `�1
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which spans the complete Hilbert space of the theory.

The 1D Schwarzian theory is closely related to the free particle on the 3D Euclidean AdS
space H+

3 with coordinates (�, f, f̄) and metric ds2 = d�2 + 2e��dfdf̄ , and to 1D Liouville
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2 + ⇡f ḟ + ⇡̄f̄

˙̄f � ⇡f ⇡̄f̄e
�

Integrate out f , ⇡f = µ.

L =
�
f, ⌧

 

1 Introduction

2

L = 1
2 �̇

2
� µe�

Integrate out ⌧̄ , ⇡̄f̄ = 1

L = 1
2 �̇
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2 + ⇡f ḟ + ⇡̄f̄

˙̄f � ⇡f ⇡̄f̄e
�

Integrate out f , ⇡f = µ.

L =
�
f, ⌧

 

1 Introduction

2

L = 1
2 �̇

2
� µe�

Integrate out ⌧̄ , ⇡̄f̄ = 1

L = 1
2 �̇
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� = log ḟ and integrating out ⇡�, it is readily seen that the above first-order Lagrangian
indeed reduces to the Schwarzian theory. Upon quantization, the variables satisfy canonical
commutation relations [f, ⇡f ] = i and [�, ⇡�] = i.

The invariance of the Schwarzian action under Möbius transformations

f !
af + b

cf + d
(2.2)

implies the presence of a set of conserved charges

`�1 = ⇡f , `0 = f⇡f + ⇡�, `1 = f 2⇡f + 2f⇡� + e�,

that satisfy an sl(2, R) algebra. The Hamiltonian H is equal to the quadratic Casimir

H = ⇡2
�

+ ⇡fe
� = `2

0 �
1
2{`�1, `1} (2.3)

and thus manifestly commutes with the SL(2, R) symmetry generators. In particular, we
can define a mutual eigenbasis of H and ⇡f = `�1

⇡f

���, k
↵

= �
���, k

↵
, H

���, k
↵

= E(k)
���, k

↵
, E(k) ⌘

1
4 + k2, (2.4)

which spans the complete Hilbert space of the theory.

The 1D Schwarzian theory is closely related to the free particle on the 3D Euclidean AdS
space H+

3 with coordinates (�, f, f̄) and metric ds2 = d�2 + 2e��dfdf̄ , and to 1D Liouville

10

SL(2,R) symmetry:                              à generators

Particle)on)H3

1D)Liouville

Schwarzian

L = 1
2 �̇

2
� µe�

Integrate out ⌧̄ , ⇡̄f̄ = 1

L = 1
2 �̇
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2 + ⇡f ḟ + ⇡̄f̄

˙̄f � ⇡f ⇡̄f̄e
�

Integrate out f , ⇡f = µ.

L =
�
f, ⌧

 

1 Introduction

2

L = 1
2 �̇

2
� µe�

Integrate out ⌧̄ , ⇡̄f̄ = 1

L = 1
2 �̇
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Hamiltonian = Casimir:

1 Introduction: Schwarzian QM

In the past few years it has been recognized that holographic CFTs at finite temperature
exhibit characteristics of many body quantum chaos [1, 2, 3, 4, 5]. The SYK model is
a soluble many body quantum system with a well-controlled large N limit that exhibits
maximal chaos and other characteristics that indicate it has a holographic dual given by a 2D
gravity theory on AdS2 [2, 6, 7, 8, 9, 10, 11]. The Schwarzian theory describes the quantum
dynamics of a single 1D degree of freedom f(⌧) and forms the theoretical gateway between
the microscopic SYK model and the dual 2D dilaton gravity theory [12, 13, 14, 15, 16].

In this paper we will study the finite temperature correlation functions in the 1D quan-
tum mechanical theory described by the action
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where C is the coupling constant of the zero-temperature theory. We will set C = 1/2 from
here on out, unless explicitly stated. Here f(⌧ + �) = f(⌧) + � runs over the space Di↵(S1)
of di↵eomorphisms on the thermal circle, and
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denotes the Schwarzian derivative.

The action S[f ] is invariant under SL(2, R) Möbius transformations that act on F via

F !
aF + b

cF + d
. (1.4)

The model possesses a corresponding set of conserved charges `a that generate the sl(2, R)
algebra [`a, `b] = i✏abc`c and commute with the Hamiltonian H. In fact, as reviewed in
section 2, the Hamiltonian H is found to be equal to the SL(2, R) Casimir, H = 1

2`a`a. The
energy spectrum and dynamics are thus uniquely determined by the SL(2, R) symmetry.
The Schwarzian theory is integrable and expected to be exactly soluble at any value of the
inverse temperature �. In the following, we will label the energy eigenvalues E in terms of
the SL(2, R) spin j = �

1
2 + ik via

E(k) = �j(j + 1) =
1

4
+ k2. (1.5)
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If we mod out by the overall SL(2, R) symmetry, the partition sum
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to be a symplectic manifold that upon quantization gives rise to the identity representation
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We choose the functional measure dµ(f) to be the one derived from the symplectic form on
M, which as shown in [20, 21, 23] takes the form Df =

Q
⌧
df/f 0.

The fact that the space M is a symplectic manifold was exploited in [23] to show that
the partition function Z is one-loop exact and given by

Z(�) =
⇣⇡

�

⌘3/2

e⇡
2
/� =

Z 1

0

dµ(k) e��E(k) (1.8)

with E(k) as in (1.5) and where the integration measure is given in terms of k by

dµ(k) = dk2 sinh(2⇡k). (1.9)

This exact result for the spectral density

⇢(E) = sinh
�
2⇡

p
E � 1/4

�
(1.10)

is further indication that the Schwarzian theory is completely soluble. In this paper we will
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(1.7) is not just any phase space, but forms the quantizable coadjoint orbit space that gives
rise to the identity module of the Virasoro algebra. As we will show in section 3, this
observation implies that the correlation functions of the Schwarzian theory
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can be obtained by taking a suitable large c limit of well-studied correlation functions of an
exactly soluble 2D CFT with Virasoro symmetry. In subsequent sections, we will then use
this relation to explicitly compute the correlation functions of a natural class of SL(2, R)
invariant observables Oi. We will now first summarize our main results.

3

which, up to the irrelevant constant B2-contribution, coincides with the Hamiltonian (2.3)
for the Schwarzian model at zero temperature. We can use this correspondence to derive
the exact formula for the spectral measure (1.10) of the Schwarzian theory quoted in the
introduction. Starting from Comtet’s result (2.14) and using that cos(2⇡B) diverges as
B ! i1, we deduce that (up to an irrelevant overall normalization)

dµ(k) = dk2 sinh(2⇡k). (2.16)

3 Partition function: a 2D Perspective

In this section we will study the path integral formulation of the Schwarzian theory at finite
temperature. In particular, we will use its relationship to the group Di↵(S1) to reformulate
1D Schwarzian QM as a suitable large c limit of 2D Virasoro CFT.3

The partition function of the Schwarzian is defined as the integral

Z(�) =

Z
Df

SL(2, R)
e�S[f ] (3.1)

over invertible functions f , satisfying the periodicity and monotonicity constraints f(⌧+�) =
f(⌧) + � and f 0(⌧) > 0. The space of functions with these properties specifies the group
Di↵(S1) of di↵eomorphisms of the circle, also known as the Virasoro group.

The SL(2, R) quotient in (3.1) indicates that the functional integral runs over the infinite
dimensional quotient space

M = Di↵(S1)/SL(2, R) (3.2)

of di↵eomorphisms modulo the group of Möbius transformations (2.7) acting on F =tan(⇡f

�
).

This space M is called the coadjoint orbit of the identity element 1 2 Di↵(S1), which is
known to be a symplectic manifold [17, 18]. Its symplectic form takes the following form

! =

Z 2⇡

0

dx


df 0

^ df 00

f 02 � df ^ df 0
�

. (3.3)

This observation was used by Stanford and Witten [23] to evaluate the functional integral
with the help of the Duistermaat-Heckman (DH) formula [30].

The DH formula applies to any integral over a symplectic manifold of the schematic form

I =

Z
dpdq e�H(p,q) (3.4)

3Related ideas are formulated in [22].
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Figure 2: The spectrum of states in the Schwarzian theory arises from the CFT spectrum of states

with conformal dimension � = c�1
24 +b(E�

1
4), in the limit b ! 0. The operators in the Schwarzian

are all light CFT operators with conformal dimension � = `b.

The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which
turns the operator q̃L0 into a projection operator on the lowest energy state in the given
channel. Combining (3.11), (3.16) and (3.19) we obtain that

Z(�) =

Z 1

0

dµ(k) e��E(k), dµ(k) = dk2 sinh(2⇡k), (3.20)

reproducing the result obtained in [23].

While the explicit formula (3.20) for the spectral density is not a new result, our deriva-
tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates
that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only
keep the states with conformal dimensions � close to the threshold �c = c

24 (Figure 2).

The above modular bootstrap argument identifies a natural spectral density on the space
of Virasoro representations, given by the modular S-matrix element SP

0 [32]. This spectral
density is not a specific property of a particular 2D CFT, but a universal measure analogous
to the Plancherel measure on the space of continuous series representations of SL(2, R). This
measure is defined for any value of the central charge c. We have shown that, after taking
the large c limit while zooming in close to �c = c�1

24 , it coincides with the exact spectral
density of the Schwarzian theory. In the following sections we will generalize this observation
with the aim of studying correlation functions.
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This space M equals the coadjoint orbit of the identity element 1 2 Di↵(S1), which is known
to be a symplectic manifold that upon quantization gives rise to the identity representation
of the Virasoro group Di↵(S1), i.e. the identity module of the Virasoro algebra [17, 18, 19].
We choose the functional measure dµ(f) to be the one derived from the symplectic form on
M, which as shown in [20, 21, 23] takes the form Df =

Q
⌧
df/f 0.

The fact that the space M is a symplectic manifold was exploited in [23] to show that
the partition function Z is one-loop exact and given by
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with E(k) as in (1.5) and where the integration measure is given in terms of k by
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is further indication that the Schwarzian theory is completely soluble. In this paper we will
show that this is indeed the case.

For our analysis we will make use of the more detailed property that the space M in
(1.7) is not just any phase space, but forms the quantizable coadjoint orbit space that gives
rise to the identity module of the Virasoro algebra. As we will show in section 3, this
observation implies that the correlation functions of the Schwarzian theory
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can be obtained by taking a suitable large c limit of well-studied correlation functions of an
exactly soluble 2D CFT with Virasoro symmetry. In subsequent sections, we will then use
this relation to explicitly compute the correlation functions of a natural class of SL(2, R)
invariant observables Oi. We will now first summarize our main results.
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It is now straightforward to combine equations (3.11)-(3.12) and extract an exact ex-
pression for the Schwarzian partition function. This can be done in two ways. First, from
the identity ⌘(� 1

⌧
) =

p
⌧2⌘(⌧) we derive that for q ⇠ 1, we can replace ⌘(⌧) ⇠ (⌧2)�1/2ei⇡⌧/6.

Using this result, we can directly take the large c limit of equation (3.11) and deduce that
Z(�) takes the following form

Z(�) = eS0+�E0

✓
⇡

�

◆3/2

exp
⇣ ⇡2

�

⌘
. (3.14)

Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0 contribu-
tion in the prefactor. This formula matches with the exact result found in [23, 31].

Alternatively, we can apply the modular transformation ⌧ ! �1/⌧ directly to the iden-
tity character �0(q) as a whole, and use the known formula for the modular S-matrix for
c > 1 Virasoro CFT to decompose the result in terms of Virasoro characters in the dual
channel. For this it is convenient to parametrize the highest weights � of the Virasoro
representations and the central charge c as follows5

�(P ) =
Q2

4
+ P 2, c = 1 + 6Q2 = 1 + 6

�
b + b�1

�2
. (3.15)

The modular transformation rule of the Virasoro characters then reads

�0 (q) =

Z 1

0

dP SP

0 �P (q̃), q̃ = e��c
6 , �P (q̃) =

q̃P
2

⌘(⌧̃)
, (3.16)

where the modular S-matrix is given by

SP

0 = 4
p

2 sinh
�
2⇡bP

�
sinh

⇣
2⇡P
b

⌘
. (3.17)

We now set

k =
P

b
, E =

� �
c

24

b2
= k2 (3.18)

and take the limit b ! 0 (which sends c ! 1) while keeping k, E fixed. In this limit

SP

0 ⇠ 2k sinh(2⇡k), �P (q̃) ⇠ e��k
2
. (3.19)

5This parametrization is familiar from Liouville CFT. We emphasize, however, that in this section we
are using completely general properties of genus one Virasoro characters.
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The Schwarzian action

S[f ] = �
1

2

Z
�

0

d⌧ {F, ⌧} = �
24⇡2

� c
L0 (3.9)

is the generator of a U(1) symmetry f(⌧) ! f(⌧ + �). This fact was used in [23] to invoke
the DH formula and conclude that the partition function Z(�) is one-loop exact.

For our purpose, the relevant observation is that the exponential of the Schwarzian action
can be expressed as an evolution operator

e�S[f ] = qL0 , q ⌘ e�
24⇡2

�c (3.10)

in the quantum theory. We are now ready to apply the above argument, that relates the
phase space integral (3.4) and the ~ ! 0 limit of the trace (3.5), to the Schwarzian partition
function (3.1). We obtain the following identity

Z(�) = lim
c!1
q!1

Tr
�
qL0

�
, q

c
24 = e�⇡2

� = fixed. (3.11)

where the trace is over the identity module of the Virasoro algebra. The quantity �0(q) =
Tr(qL0) is the identity character of the Virasoro algebra. Geometrically, it represents the
torus partition function of a chiral identity sector of a 2D CFT. Taking the limit q ! 1
amounts to sending the modular parameter ⌧ ! 0. In this limit, the torus degenerates into
an infinitesimally thin circular tube. The long direction of the circular tube is the original
thermal circle of the Schwarzian theory. The short direction is a fiducial circle that we added
in order to write the integral over M as a trace.

The identity character of a c > 1 CFT takes the form

Tr
�
qL0

�
⌘ �0(q) =

q
1�c
24 (1 � q)

⌘(⌧)
, (3.12)

where ⌘(⌧) denotes the Dedekind eta function ⌘(⌧) = q
1
24

Q1
n=1(1� qn) with q = e2⇡i⌧ .4 The

factor (1 � q) in the above formula for the identity character accounts for the presence of
the null state L�1|0i = 0.

4We apologize to the reader for temporarily also using the symbol ⌧ for the modular parameter q = e2⇡i⌧

of the torus. Using equation (3.11), we can express the modular parameter ⌧ in terms of the temperature
� of the Schwarzian and the central charge c of the auxiliary 2D CFT via

⌧ =
12⇡i

�c
. (3.13)
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This is an exact result

where H(p,q) generates, via the Poisson bracket {p, q} = 1, a U(1) symmetry of the manifold.
In this paper we will apply a somewhat di↵erent argument: instead of the DH theorem, we
will use the general fact that the phase space integral of the form (3.4) is equal to the
~ ! 0 limit of the trace of the quantum operator e�H(p,q) over the Hilbert space obtained
by quantizing the phase space:

I = lim
~!0

Tr
�
e�H(p,q)

�
. (3.5)

The physical intuition that underlies this equality is that for small ~, the Hilbert space
admits an orthogonal basis of states each localized within a Planck cell in phase space. The
trace then takes the form of a sum over all Planck cells, which in the ~ ! 0 limit reduces
to the phase space integral defined via the symplectic measure.

The strategy that we plan to follow is to exploit the fact that, if there exists a precise
way to quantize the phase space M and construct the corresponding Hilbert space, then
the formula (3.5) provides an exact and e�cient way of computing the integral I.

3.1 Spectral density from modular bootstrap

In our problem, the phase space (M, !) specified by equations (3.2) and (3.3) can be quan-
tized through the standard methods of co-adjoint orbit quantization. The details of this
quantization step are explained in detail in [17, 18, 19, 20]. It is customary to label the
quantization parameter ~ via

~ =
24⇡

c
(3.6)

and introduce the following basis of SL(2, R) invariant functions on M

Ln =
� c

48⇡2

Z
�

0

d⌧ e2⇡in⌧/�
�
F, ⌧

 
. (3.7)

The main statement that we will need for our purpose is that in the quantum theory, these
functions Ln become identified with the generators of the Virasoro algebra

[Ln, Lm] = (n � m)Ln+m +
c

12
(n3

� n)�n+m (3.8)

at central charge c. The classical limit ~ ! 0 corresponds to the large central charge limit
c ! 1. The Hilbert space of the quantum theory is given by the identity module of the
Virasoro algebra, i.e the linear space spanned by all states obtained by acting with L�n’s
with n > 2 on the SL(2, R) invariant vacuum state |0

↵
.
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If we mod out by the overall SL(2, R) symmetry, the partition sum

Z(�) =

Z

M

Df e�S[f ] (1.6)

reduces to an integral over the infinite dimensional quotient space

M = Di↵(S1)/SL(2, R). (1.7)

This space M equals the coadjoint orbit of the identity element 1 2 Di↵(S1), which is known
to be a symplectic manifold that upon quantization gives rise to the identity representation
of the Virasoro group Di↵(S1), i.e. the identity module of the Virasoro algebra [17, 18, 19].
We choose the functional measure dµ(f) to be the one derived from the symplectic form on
M, which as shown in [20, 21, 23] takes the form Df =

Q
⌧
df/f 0.

The fact that the space M is a symplectic manifold was exploited in [23] to show that
the partition function Z is one-loop exact and given by

Z(�) =
⇣⇡
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⌘3/2
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/� =

Z 1

0

dµ(k) e��E(k) (1.8)

with E(k) as in (1.5) and where the integration measure is given in terms of k by

dµ(k) = dk2 sinh(2⇡k). (1.9)

This exact result for the spectral density

⇢(E) = sinh
�
2⇡

p
E � 1/4

�
(1.10)

is further indication that the Schwarzian theory is completely soluble. In this paper we will
show that this is indeed the case.

For our analysis we will make use of the more detailed property that the space M in
(1.7) is not just any phase space, but forms the quantizable coadjoint orbit space that gives
rise to the identity module of the Virasoro algebra. As we will show in section 3, this
observation implies that the correlation functions of the Schwarzian theory
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can be obtained by taking a suitable large c limit of well-studied correlation functions of an
exactly soluble 2D CFT with Virasoro symmetry. In subsequent sections, we will then use
this relation to explicitly compute the correlation functions of a natural class of SL(2, R)
invariant observables Oi. We will now first summarize our main results.
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phase space integral (3.4) and the ~ ! 0 limit of the trace (3.5), to the Schwarzian partition
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� = fixed. (3.11)

where the trace is over the identity module of the Virasoro algebra. The quantity �0(q) =
Tr(qL0) is the identity character of the Virasoro algebra. Geometrically, it represents the
torus partition function of a chiral identity sector of a 2D CFT. Taking the limit q ! 1
amounts to sending the modular parameter ⌧ ! 0. In this limit, the torus degenerates into
an infinitesimally thin circular tube. The long direction of the circular tube is the original
thermal circle of the Schwarzian theory. The short direction is a fiducial circle that we added
in order to write the integral over M as a trace.

The identity character of a c > 1 CFT takes the form
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where ⌘(⌧) denotes the Dedekind eta function ⌘(⌧) = q
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n=1(1� qn) with q = e2⇡i⌧ .4 The

factor (1 � q) in the above formula for the identity character accounts for the presence of
the null state L�1|0i = 0.
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are all light CFT operators with conformal dimension � = `b.

The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which
turns the operator q̃L0 into a projection operator on the lowest energy state in the given
channel. Combining (3.11), (3.16) and (3.19) we obtain that

Z(�) =

Z 1

0

dµ(k) e��E(k), dµ(k) = dk2 sinh(2⇡k), (3.20)

reproducing the result obtained in [23].

While the explicit formula (3.20) for the spectral density is not a new result, our deriva-
tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates
that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only
keep the states with conformal dimensions � close to the threshold �c = c

24 (Figure 2).

The above modular bootstrap argument identifies a natural spectral density on the space
of Virasoro representations, given by the modular S-matrix element SP

0 [32]. This spectral
density is not a specific property of a particular 2D CFT, but a universal measure analogous
to the Plancherel measure on the space of continuous series representations of SL(2, R). This
measure is defined for any value of the central charge c. We have shown that, after taking
the large c limit while zooming in close to �c = c�1

24 , it coincides with the exact spectral
density of the Schwarzian theory. In the following sections we will generalize this observation
with the aim of studying correlation functions.
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where the trace is over the identity module of the Virasoro algebra. The quantity �0(q) =
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amounts to sending the modular parameter ⌧ ! 0. In this limit, the torus degenerates into
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factor (1 � q) in the above formula for the identity character accounts for the presence of
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Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0 contribu-
tion in the prefactor. This formula matches with the exact result found in [22].

Alternatively, we can apply the modular transformation ⌧ ! �1/⌧ directly to the iden-
tity character �0(q) as a whole, and use the known formula for the modular S-matrix for
c > 1 to decompose the result in terms of Virasoro characters in the dual channel. For this
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and take the limit b ! 0 (which sends c ! 1) while keeping k, E fixed. In this limit
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0 ⇠ 2k sinh(2⇡k), �P (q̃) ⇠ e��k
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(3.18)

The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which
turns the operator q̃L0 into a projection operator on the lowest energy state in the given
channel. Combining (3.11), (3.15) and (3.18) we obtain that

Z(�) =

Z 1

0

dµ(k) e��E(k), dµ(k) = dk2 sinh(2⇡k) (3.19)

reproducing the result obtained in [22].

While the explicit formula (3.19) for the spectral density is not a new result, our deriva-
tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates
that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only
keep the states with conformal dimensions � close to the threshold �c = c

24 .

The above modular bootstrap argument identifies a natural spectral density on the space
of Virasoro representations, given by the modular S-matrix element SP

0 [?]. This spectral
density is not a specific property of a particular 2D CFT, but a universal measure analogous
to the Plancherel measure on the space of continuous series representations of SL(2, R). This
measure is defined for any value of the central charge c. We have shown that, after taking the
large c limit while zooming in close to �c = c

24 , it coincides with the exact spectral density
of the Schwarzian theory. In the following sections we will generalize this observation, with
the aim of studying correlation functions.

3.2 Spectral density from ZZ branes

As further preparation for the study correlation functions, it is useful to derive the formula
for the spectral density from a slightly di↵erent perspective. As mentioned above, the
identity character �0(q) represents the chiral genus one partition function of the identity
sector of the Virasoro CFT. Alternatively, we can identify �0(0) with the partition function
of the Virasoro CFT on the annulus. This annulus partition function is equal a trace over
an open string sector of the Virasoro CFT, or by using channel duality, as the transition
amplitude between two ZZ boundary states [23].

�0(q) = hZZ|q̃L0 |ZZi (3.20)
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where the trace is over the identity module of the Virasoro algebra. The quantity �0(q) =
Tr(qL0) is the identity character of the Virasoro algebra. Geometrically, it represents the
torus partition function of a chiral identity sector of a 2D CFT. Taking the limit q ! 1
amounts to sending the modular parameter ⌧ ! 0. In this limit, the torus degenerates into
an infinitesimally thin circular tube. The long direction of the circular tube is the original
thermal circle of the Schwarzian theory.

The identity character of a c > 1 CFT takes the form
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factor (1 � q) in the above formula for the identity character accounts for the presence of
the null state L�1|0i = 0.

It is now straightforward to combine equations (3.11)-(3.12) and extract an exact ex-
pression for the Schwarzian partition function. This can be done in two ways. First, from
the identity ⌘(�1
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Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0 contribu-
tion in the prefactor. This formula matches with the exact result found in [22].

Alternatively, we can apply the modular transformation ⌧ ! �1/⌧ directly to the iden-
tity character �0(q) as a whole, and use the known formula for the modular S-matrix for
c > 1 to decompose the result in terms of Virasoro characters in the dual channel. For this
it is convenient to parametrize the highest weights � of the Virasoro representations and
the central charge c via
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of the Virasoro CFT on the annulus. This annulus partition function is equal a trace over
an open string sector of the Virasoro CFT, or by using channel duality, as the transition
amplitude between two ZZ boundary states [23].
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The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which
turns the operator q̃L0 into a projection operator on the lowest energy state in the given
channel. Combining (3.11), (3.15) and (3.18) we obtain that
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reproducing the result obtained in [22].

While the explicit formula (3.19) for the spectral density is not a new result, our deriva-
tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates
that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only
keep the states with conformal dimensions � close to the threshold �c = c

24 .

The above modular bootstrap argument identifies a natural spectral density on the space
of Virasoro representations, given by the modular S-matrix element SP

0 [?]. This spectral
density is not a specific property of a particular 2D CFT, but a universal measure analogous
to the Plancherel measure on the space of continuous series representations of SL(2, R). This
measure is defined for any value of the central charge c. We have shown that, after taking the
large c limit while zooming in close to �c = c

24 , it coincides with the exact spectral density
of the Schwarzian theory. In the following sections we will generalize this observation, with
the aim of studying correlation functions.
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sector of the Virasoro CFT. Alternatively, we can identify �0(0) with the partition function
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an open string sector of the Virasoro CFT, or by using channel duality, as the transition
amplitude between two ZZ boundary states [23].
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It is now straightforward to combine equations (3.11)-(3.12) and extract an exact ex-
pression for the Schwarzian partition function. This can be done in two ways. First, from
the identity ⌘(� 1

⌧
) =

p
⌧2⌘(⌧) we derive that for q ⇠ 1, we can replace ⌘(⌧) ⇠ (⌧2)�1/2ei⇡⌧/6.

Using this result, we can directly take the large c limit of equation (3.11) and deduce that
Z(�) takes the following form

Z(�) = eS0+�E0
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⌘
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Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0 contribu-
tion in the prefactor. This formula matches with the exact result found in [23, 31].

Alternatively, we can apply the modular transformation ⌧ ! �1/⌧ directly to the iden-
tity character �0(q) as a whole, and use the known formula for the modular S-matrix for
c > 1 Virasoro CFT to decompose the result in terms of Virasoro characters in the dual
channel. For this it is convenient to parametrize the highest weights � of the Virasoro
representations and the central charge c as follows5
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The modular transformation rule of the Virasoro characters then reads
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where the modular S-matrix is given by
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and take the limit b ! 0 (which sends c ! 1) while keeping k, E fixed. In this limit
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5This parametrization is familiar from Liouville CFT. We emphasize, however, that in this section we
are using completely general properties of genus one Virasoro characters.
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Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0 contribu-
tion in the prefactor. This formula matches with the exact result found in [22].

Alternatively, we can apply the modular transformation ⌧ ! �1/⌧ directly to the iden-
tity character �0(q) as a whole, and use the known formula for the modular S-matrix for
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and take the limit b ! 0 (which sends c ! 1) while keeping k, E fixed. In this limit
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(3.18)

The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which
turns the operator q̃L0 into a projection operator on the lowest energy state in the given
channel. Combining (3.11), (3.15) and (3.18) we obtain that
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Z 1
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dµ(k) e��E(k), dµ(k) = dk2 sinh(2⇡k) (3.19)

reproducing the result obtained in [22].

While the explicit formula (3.19) for the spectral density is not a new result, our deriva-
tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates
that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only
keep the states with conformal dimensions � close to the threshold �c = c

24 .

The above modular bootstrap argument identifies a natural spectral density on the space
of Virasoro representations, given by the modular S-matrix element SP

0 [?]. This spectral
density is not a specific property of a particular 2D CFT, but a universal measure analogous
to the Plancherel measure on the space of continuous series representations of SL(2, R). This
measure is defined for any value of the central charge c. We have shown that, after taking the
large c limit while zooming in close to �c = c

24 , it coincides with the exact spectral density
of the Schwarzian theory. In the following sections we will generalize this observation, with
the aim of studying correlation functions.

3.2 Spectral density from ZZ branes

As further preparation for the study correlation functions, it is useful to derive the formula
for the spectral density from a slightly di↵erent perspective. As mentioned above, the
identity character �0(q) represents the chiral genus one partition function of the identity
sector of the Virasoro CFT. Alternatively, we can identify �0(0) with the partition function
of the Virasoro CFT on the annulus. This annulus partition function is equal a trace over
an open string sector of the Virasoro CFT, or by using channel duality, as the transition
amplitude between two ZZ boundary states [23].
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where the trace is over the identity module of the Virasoro algebra. The quantity �0(q) =
Tr(qL0) is the identity character of the Virasoro algebra. Geometrically, it represents the
torus partition function of a chiral identity sector of a 2D CFT. Taking the limit q ! 1
amounts to sending the modular parameter ⌧ ! 0. In this limit, the torus degenerates into
an infinitesimally thin circular tube. The long direction of the circular tube is the original
thermal circle of the Schwarzian theory.
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factor (1 � q) in the above formula for the identity character accounts for the presence of
the null state L�1|0i = 0.

It is now straightforward to combine equations (3.11)-(3.12) and extract an exact ex-
pression for the Schwarzian partition function. This can be done in two ways. First, from
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factor (1 � q) in the above formula for the identity character accounts for the presence of
the null state L�1|0i = 0.

It is now straightforward to combine equations (3.11)-(3.12) and extract an exact ex-
pression for the Schwarzian partition function. This can be done in two ways. First, from
the identity ⌘(�1

⌧
) =

p
⌧2⌘(⌧) we derive that for q ⇠ 1, we can replace ⌘(⌧) ⇠ (⌧2)�1/2ei⇡⌧/6.

Using this result, we can directly take the large c limit of equation (3.11) and deduce that
Z(�) takes the following form

Z(�) = eS0+�E0

✓
2⇡

�

◆3/2

exp
⇣ 2⇡2

�

⌘
. (3.13)

Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0 contribu-
tion in the prefactor. This formula matches with the exact result found in [22].

Alternatively, we can apply the modular transformation ⌧ ! �1/⌧ directly to the iden-
tity character �0(q) as a whole, and use the known formula for the modular S-matrix for
c > 1 to decompose the result in terms of Virasoro characters in the dual channel. For this
it is convenient to parametrize the highest weights � of the Virasoro representations and
the central charge c via

�(P ) =
Q2

4
+ P 2, c = 1 + 6Q2 = 1 + 6

�
b + b�1

�2
(3.14)

The modular transformation rule of the Virasoro characters then reads

�0 (q) =

Z 1
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dP SP

0 �P (q̃), q̃ = e�⇡c
6 , �P (q̃) =

q̃P
2

⌘(⌧̃)
(3.15)

where the modular S-matrix is given by

SP

0 = 4
p

2 sinh
�
2⇡bP

�
sinh
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2⇡P
b

⌘
. (3.16)
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We now set

k =
P

b
, E �

1

4
=

� �
c

24

b2
= k2 (3.17)

and take the limit b ! 0 (which sends c ! 1) while keeping k, E fixed. In this limit

SP

0 ⇠ 2k sinh(2⇡k), �P (q̃) ⇠ e��k
2

(3.18)

The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which
turns the operator q̃L0 into a projection operator on the lowest energy state in the given
channel. Combining (3.11), (3.15) and (3.18) we obtain that

Z(�) =

Z 1

0

dµ(k) e��E(k), dµ(k) = dk2 sinh(2⇡k) (3.19)

reproducing the result obtained in [22].

While the explicit formula (3.19) for the spectral density is not a new result, our deriva-
tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates
that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only
keep the states with conformal dimensions � close to the threshold �c = c

24 .

The above modular bootstrap argument identifies a natural spectral density on the space
of Virasoro representations, given by the modular S-matrix element SP

0 [?]. This spectral
density is not a specific property of a particular 2D CFT, but a universal measure analogous
to the Plancherel measure on the space of continuous series representations of SL(2, R). This
measure is defined for any value of the central charge c. We have shown that, after taking the
large c limit while zooming in close to �c = c

24 , it coincides with the exact spectral density
of the Schwarzian theory. In the following sections we will generalize this observation, with
the aim of studying correlation functions.

3.2 Spectral density from ZZ branes

As further preparation for the study correlation functions, it is useful to derive the formula
for the spectral density from a slightly di↵erent perspective. As mentioned above, the
identity character �0(q) represents the chiral genus one partition function of the identity
sector of the Virasoro CFT. Alternatively, we can identify �0(0) with the partition function
of the Virasoro CFT on the annulus. This annulus partition function is equal a trace over
an open string sector of the Virasoro CFT, or by using channel duality, as the transition
amplitude between two ZZ boundary states [23].

�0(q) = hZZ|q̃L0 |ZZi (3.20)
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Schwarzian QM = limit of 2D Liouville field theory on the strip
Schwarzian from	ZZ-branes

ZZ ZZ

�

|ZZi

hZZ|

Figure 2: Geometry of the open Liouville theory between ZZ-branes at finite temperature in the

left. In the right, the same theory from the perspective of the open channel between ZZ boundary

states.

Before moving on to correlation functions we will derive this result in a way that will be
useful later. In the open Liouville channel we are taking a fixed spacial length and taking
the periodic time direction to go to zero �2D ! 0. In the closed Liouville channel this is
a transition amplitude in a cylinder where the spacial circle size goes to zero. For later
convenience when using CFT formulas, we will take instead the spacial circle to be fixed to
2⇡, and take the time span to diverge as T ⇠ b�2. We show a diagram of this mapping in
figure 2.

The boundary state associated to a ZZ-brane is given as an integral over Ishibashi states

|ZZi =

Z 1

0

dP  ZZ(P ) ||P ii,  ZZ(P ) =
2

5
42⇡iP

�(1 � 2ibP )�(1 + 2iP
b )

(⇡µ�(b2))
iP
b . (3.11)

In the limit we are considering the boundary states are associated to a circle with a radius
that goes to zero (if we map the cylinder to the complex plane) and this allows us to
approximate ||P ii ! |P i. This is the main feature that will allow us later to compute
correlation functions since it can be used to turn a correlation function between ZZ-branes
into an integral of a correlation function on the sphere. Using this and taking T = �b�2,
where � is the temperature of the Schwarzian theory, the partition function becomes

Z =

Z 1

0

dP | ZZ(P )|2 e�� P2

b2 , | ZZ(P )|2 = 4
p

2 sinh 2⇡bP sinh
2⇡P

b
(3.12)

This integral is dominated by states where P ⇠ b. Therefore we define P = kb and rewrite
the previous expression as

Z ⇠

Z 1

0

dk2 e��k2
sinh (2⇡

p

2Ck), (3.13)
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Figure 2: The identity character can be represented as the annulus partition sum of the Virasoro

CFT, or by using channel duality, as the transition amplitude between two ZZ boundary states.

The Schwarzian theory arises in the limit q ! 1, which in the dual closed string channel
corresponds to the limit q̃ ! 0, as shown in figure 2.

The ZZ boundary state is given as an integral over Ishibashi boundary states [?]4

|ZZi =

Z 1

0

dP  ZZ(P ) ||P ii,  ZZ(P ) =
2⇡iP

�(1 � 2ibP )�(1 + 2iP
b )

(3.21)

In the limit we are considering the boundary states are associated to a circle with a radius
that goes to zero (if we map the cylinder to the complex plane) and this allows us to
approximate ||P ii ! |P i. This is the main feature that will allow us later to compute
correlation functions since it can be used to turn a correlation function between ZZ-branes
into an integral of a correlation function on the sphere. Using this and taking q̃ = e��/b2 ,
where � is the temperature of the Schwarzian theory, the partition function becomes

Z =

Z 1

0

dP | ZZ(P )|2 e�� P2

b2 , | ZZ(P )|2 = sinh
�
2⇡bP

�
sinh

⇣
2⇡P
b

⌘
(3.22)

For small b this integral is dominated by states with P of order b. Therefore we define
P = kb and take the b ! 0 limit, we recover the result (3.19)

4 Schwarzian correlators from ZZ branes

In this section we will exploit the relationship between the Schwarzian theory and Virasoro
CFT to compute correlation functions of the bi-local operators

O`(⌧1, ⌧2) ⌘

 p
f 0(⌧1)f 0(⌧2)

2 sin 1
2 [f(⌧1) � f(⌧2)]

!2`

, (4.1)

4
Here and in the following, we drop irrelevant overall constant factors.

17

�

c� 1

24

0

� =
c� 1

24
+ P

2

Di↵(S
1
)/SL(2,R) $ 1 (22)

(C = 1/2) (23)

!n ⇠ i

p

M (n+ `) (24)

Z(�) =

✓
2⇡

�

◆3/2

exp
2⇡

2

�
=

Z 1

0

dµ(k) e
��E(k)

(25)

G(⌧) ⇠

Z
dM e

��M
⇢(M)

Z
d! |A|

2
(26)

||P ii ! |P i (27)

| ZZ(P )|
2

(28)

References

2

�

c� 1

24

0

� =
c� 1

24
+ P

2

Di↵(S
1
)/SL(2,R) $ 1 (22)

(C = 1/2) (23)

!n ⇠ i

p

M (n+ `) (24)

Z(�) =

✓
2⇡

�

◆3/2

exp
2⇡

2

�
=

Z 1

0

dµ(k) e
��E(k)

(25)

G(⌧) ⇠

Z
dM e

��M
⇢(M)

Z
d! |A|

2
(26)

||P ii ! |P i (27)

| ZZ(P )|
2
= S

P
0 (28)

References

2

The functional integral over Di↵(S1)/SL(2, R) is associated to the identity representa-
tion of the Virasoro group. The path integral was shown explicitly in [30] to give the identity
character

ZAS(T ) = �0(q) =
(1 � q)q� c

24

⌘(q)
, q = e2⇡T . (3.7)

The extra factor of (1 � q) comes from the extra zero-modes. Since the Hamiltonian is a
U(1) generator, this functional integral can be performed using the Duistermaat-Heckman
theorem [33].

We will take �2D = 4⇡ 2⇡C
� b2 and b ! 0 limit, which is equivalent to q ! 1 limit

with qc fixed, where c is the central charge of the Virasoro algebra. Using the identity
⌘(�1

⌧ ) =
p

�i⌧⌘(t) we get the exact Schwarzian partition function

Z = eS0+�E0

✓
2⇡C

�

◆3/2

exp
2⇡2C

�
. (3.8)

In this expression we collected all the divergent terms into a zero-point entropy S0 and a
zero-point energy E0.3

Performing a modular transformation ⌧ ! �
1

⌧ on the formula in terms of the identity
character (??)

�0

✓
�1

⌧

◆
=

Z 1

0

dP SP
0

�P (⌧), SP
0

= 4
p

2 sinh 2⇡bP sinh
2⇡P

b
. (3.9)

This approach will be useful in order to obtain the density of states in the supersymmetric
case, since the modular transformation of the characters is well known.

3.1 ZZ branes

The exact partition function of Liouville theory between two ZZ-branes was found analyzing
the modular bootstrap by Zamolodchikov and Zamolodchikov [23]. They found that it is
given by the identity character. In the closed channel the partition function is given by the
transition function between two ZZ boundary states

�0(q) = hZZ|e�THclosed |ZZi. (3.10)

3 In general they will depend on the UV completion of the Schwarzian theory. In our case the UV
complete theory is two-dimensional Liouville at finite b. Another known UV completion is the SYK model
which gives a finite value for E0 and S0, which was found by taking the so-called triple-scaled limit of the
theory in [36]. We will see an example in section 7.2 where this divergence disappears, giving a completely
finite theory when we consider N = 2 Liouville theory. Even the N = 1 theory already forces E0 = 0, but
allows for a divergent S0.
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Figure 2: The identity character can be represented as the annulus partition sum of the Virasoro

CFT, or by using channel duality, as the transition amplitude between two ZZ boundary states.

The Schwarzian theory arises in the limit q ! 1, which in the dual closed string channel
corresponds to the limit q̃ ! 0, as shown in figure 2.

The ZZ boundary state is given as an integral over Ishibashi boundary states [?]4
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�(1 � 2ibP )�(1 + 2iP
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(3.21)

In the limit we are considering the boundary states are associated to a circle with a radius
that goes to zero (if we map the cylinder to the complex plane) and this allows us to
approximate ||P ii ! |P i. This is the main feature that will allow us later to compute
correlation functions since it can be used to turn a correlation function between ZZ-branes
into an integral of a correlation function on the sphere. Using this and taking q̃ = e��/b

2
,

where � is the temperature of the Schwarzian theory, the partition function becomes

Z =

Z 1
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dP | ZZ(P )|2 e��
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b2 , | ZZ(P )|2 = sinh
�
2⇡bP

�
sinh

⇣
2⇡P
b

⌘
(3.22)

For small b this integral is dominated by states with P of order b. Therefore we define
P = kb and take the b ! 0 limit, we recover the result (3.19)

4 Schwarzian correlators from ZZ branes

In this section we will exploit the relationship between the Schwarzian theory and Virasoro
CFT to compute correlation functions of the bi-local operators

O`(⌧1, ⌧2) ⌘

 p
f 0(⌧1)f 0(⌧2)

2 sin 1
2 [f(⌧1) � f(⌧2)]

!2`

, (4.1)

4
Here and in the following, we drop irrelevant overall constant factors.
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In the limit we are considering the boundary states are associated to a circle with a radius
that goes to zero (if we map the cylinder to the complex plane) and this allows us to
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For small b this integral is dominated by states with P of order b. Therefore we define
P = kb and take the b ! 0 limit, we recover the result (3.19)
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If we mod out by the overall SL(2, R) symmetry, the partition sum

Z(�) =

Z

M

Df e�S[f ] (1.6)

reduces to an integral over the infinite dimensional quotient space

M = Di↵(S1)/SL(2, R). (1.7)

This space M equals the coadjoint orbit of the identity element 1 2 Di↵(S1), which is known
to be a symplectic manifold that upon quantization gives rise to the identity representation
of the Virasoro group Di↵(S1), i.e. the identity module of the Virasoro algebra [17, 18, 19].
We choose the functional measure dµ(f) to be the one derived from the symplectic form on
M, which as shown in [20, 21, 23] takes the form Df =

Q
⌧
df/f 0.

The fact that the space M is a symplectic manifold was exploited in [23] to show that
the partition function Z is one-loop exact and given by

Z(�) =
⇣⇡

�

⌘3/2

e⇡
2
/� =

Z 1

0

dµ(k) e��E(k) (1.8)

with E(k) as in (1.5) and where the integration measure is given in terms of k by

dµ(k) = dk2 sinh(2⇡k). (1.9)

This exact result for the spectral density

⇢(E) = sinh
�
2⇡

p
E � 1/4

�
(1.10)

is further indication that the Schwarzian theory is completely soluble. In this paper we will
show that this is indeed the case.

For our analysis we will make use of the more detailed property that the space M in
(1.7) is not just any phase space, but forms the quantizable coadjoint orbit space that gives
rise to the identity module of the Virasoro algebra. As we will show in section 3, this
observation implies that the correlation functions of the Schwarzian theory

⌦
O1 ... On

↵
=

1

Z

Z

M

Df e�S[f ]
O1 ... On =

1

Z
Tr

�
e��H

O1 ... On

�
(1.11)

can be obtained by taking a suitable large c limit of well-studied correlation functions of an
exactly soluble 2D CFT with Virasoro symmetry. In subsequent sections, we will then use
this relation to explicitly compute the correlation functions of a natural class of SL(2, R)
invariant observables Oi. We will now first summarize our main results.

3

1.1 Overview of results

We will study the correlation functions of the following bi-local operators

O`(⌧1, ⌧2) ⌘

 p
f 0(⌧1)f 0(⌧2)

�

⇡
sin ⇡

�
[f(⌧1) � f(⌧2)]

!2`

. (1.12)

We can think of this expression as the two-point function O`(⌧1, ⌧2) = hO(⌧1)O(⌧2)iCFT of
some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or equiv-
alently, as the boundary-to-boundary propagator of a bulk matter field coupled to the 2D
dilaton-gravity theory in a classical black hole background.

The bi-local operator (1.12) is invariant under the SL(2, R) transformations (1.4). This
in particular implies that O` commutes with the Hamiltonian H of the Schwarzian theory

[H, O`(⌧1, ⌧2)] = 0. (1.13)

So the bi-local operators are diagonal between energy eigenstates. We will see that the time-
ordered correlation functions of O`(⌧1, ⌧2) indeed only depend on the time-di↵erence ⌧2 � ⌧1.

Below we will give the explicit formulas for the correlation function with one and two
insertions of the bi-local operator O`. We will call these the two-point and four-point func-
tions, since they depend on two and four di↵erent times ⌧i, respectively. In the holographic
dual theory they correspond to the AdS2 gravity amplitude with one and two boundary-to-
boundary propagators. Our eventual interest is to compute the out-of-time ordered (OTO)
four point function, which exhibits maximal Lyapunov behavior and contains the gravita-
tional scattering amplitudes of the bulk theory as an identifiable subfactor.

Two-point function

The two-point function at finite temperature is defined by the functional integral with
a single insertion of the bi-local operator

⌦
O`(⌧1, ⌧2)

↵
=

1

Z

Z
Df e�S[f ]

O`(⌧1, ⌧2) = ⌧2 ⌧1
` (1.14)

Here we introduced a diagrammatic notation that will be useful below.

The two-point function of the Schwarzian theory at zero temperature was obtained in
[21]. As we will show in section 4, the generalization of their result to finite temperature is
given by a double integral over intermediate SL(2, R) representation labels k1 and k2

⌦
O`(⌧1, ⌧2)

↵
=

Z 2Y

i=1

dµ(ki) A2(ki, `, ⌧i). (1.15)
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Correlation functions

1.1 Overview of results
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given by a double integral over intermediate SL(2, R) representation labels k1 and k2

⌦
O`(⌧1, ⌧2)

↵
=

Z 2Y

i=1

dµ(ki) A2(ki, `, ⌧i). (1.15)
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Two-point function

We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧2�⌧1)k2
1�(��⌧2+⌧1)k2

2
�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k

= e� k
2 (⌧2�⌧1) ,

k2

k1
` = �`(k1, k2) . (1.18)

The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
energy eigenstate with energy E = k2. Each vertex corresponds to a factor

�`(k1, k2) =

s
�(` ± ik1 ± ik2)

�(2`)
. (1.19)
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1.1 Overview of results

We will study the correlation functions of the following bi-local operators

O`(⌧1, ⌧2) ⌘

 p
f 0(⌧1)f 0(⌧2)

�

⇡
sin ⇡

�
[f(⌧1) � f(⌧2)]

!2`

. (1.12)

We can think of this expression as the two-point function O`(⌧1, ⌧2) = hO(⌧1)O(⌧2)iCFT of
some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or equiv-
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in particular implies that O` commutes with the Hamiltonian H of the Schwarzian theory

[H, O`(⌧1, ⌧2)] = 0. (1.13)

So the bi-local operators are diagonal between energy eigenstates. We will see that the time-
ordered correlation functions of O`(⌧1, ⌧2) indeed only depend on the time-di↵erence ⌧2 � ⌧1.

Below we will give the explicit formulas for the correlation function with one and two
insertions of the bi-local operator O`. We will call these the two-point and four-point func-
tions, since they depend on two and four di↵erent times ⌧i, respectively. In the holographic
dual theory they correspond to the AdS2 gravity amplitude with one and two boundary-to-
boundary propagators. Our eventual interest is to compute the out-of-time ordered (OTO)
four point function, which exhibits maximal Lyapunov behavior and contains the gravita-
tional scattering amplitudes of the bulk theory as an identifiable subfactor.
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This vertex factor represents the matrix element of each endpoint of the bi-local operator
between the corresponding two energy eigenstates.

Time ordered 4-point function

The time-ordered 4-point function comes in di↵erent types, depending on the ordering
of the four di↵erent times. The simplest ordering is

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
=

⌧3

⌧2

⌧4

⌧1`1

`2

(1.20)

where we assume that the four times are cyclically ordered via ⌧1 < ⌧2 < ⌧3 < ⌧4. This
ordering ensures that the legs of the two bi-local operators do not cross each other. This
time-ordered 4-point function is given by a triple integral over intermediate momenta

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
=

Z 3Y

i=1

dµ(ki) A4

�
ki, `i, ⌧i

�
. (1.21)

The momentum amplitude is represented by the diagram

A4

�
ki, `i, ⌧i

�
= ksks

`1

`2

k1

k4

(1.22)

Here we took into account the aforementioned result (1.13) that the bi-local operators com-
mute with the Hamiltonian, so that the same energy eigenstate (labeled by the momentum
variable ks) appears on both sides of each bi-local operator.

Applying the Feynman rules formulated above, we find that the momentum amplitude
of the time-ordered four point function reads

A4

�
ki, `i, ⌧i

�
= e�k

2
1(⌧2�⌧1)�k

2
4(⌧4�⌧3)�k

2
s(��⌧2+⌧3�⌧4+⌧1) �`1(k1, ks)

2�`2(ks, k4)
2. (1.23)

In section 4, we will explicitly compute the four-point function from the relationship between
the Schwarzian and 2D CFT and confirm that this is indeed the correct result.1

1Note that the amplitude (1.23) factorizes into a product of two 2-point amplitudes

A4

�
ki, `i, ⌧i

�
= e�k

2
s A2

�
k1, ks, `1, ⌧21

�
A2

�
k4, ks, `2, ⌧43

�
(1.24)

and thus indeed only depends on the two time di↵erences ⌧21 = ⌧2 � ⌧1 and ⌧43 = ⌧4 � ⌧3, as dictated by
equation (1.13).
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OTO 4-point function

Finally we will turn to our main interest, the out-of-time-ordered 4-point function [2].
We will diagrammatically represent the OTO 4-point function as

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
OTO

=

⌧2

⌧3

`2 `1

⌧4

⌧1

(1.25)

where in spite of their new geometric ordering along the circle, we in fact assume that the
four time instances continue to be ordered according to ⌧1 < ⌧2 < ⌧3 < ⌧4. Operationally, we
define the OTO correlation function via analytic continuation starting from the time ordered
correlation function with the ordering ⌧1 < ⌧3 < ⌧2 < ⌧4 as indicated by the above diagram.
Since for this configuration, the legs of the bi-local operators do in fact cross, the resulting
time ordered 4-point function di↵ers from the analytic continuation of the uncrossed 4-point
function (1.23).

In section 5, we will show that the OTO correlation function can be expressed as an
integral over four momentum variables

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
OTO

=

Z 4Y

i=1

dµ(ki) A
OTO
4

�
ki, `i, ⌧i

�
, (1.26)

where the momentum space amplitude is represented by the following diagram (to avoid
clutter, we again suppressed the times ⌧i labeling the end points of the bi-local operators)

A
OTO
4

�
ki, `i, ⌧i

�
= kskt

`2 `1

k1

k4

(1.27)

Note that we now have four di↵erent momentum variables ki. The correlation function will
indeed depend on all four time di↵erences ⌧i+1 � ⌧i.

The final answer for the momentum amplitude of the OTO 4-point function reads

A
OTO
4

�
ki, `i, ⌧i

�
= e�k

2
1(⌧2�⌧1)�k

2
t (⌧3�⌧2)�k

2
4(⌧4�⌧3)�k

2
s(��⌧4+⌧1) (1.28)

⇥ �`1(k1, ks)�`2(ks, k4)�`1(k1, kt)�`2(kt, k4) ⇥ Rkskt

⇥
k4
k1

`2
`1

⇤
.
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into an integral of a correlation function on the sphere. Using this and taking q̃ = e��/b
2
,

where � is the temperature of the Schwarzian theory, the partition function becomes

Z =

Z 1

0

dP | ZZ(P )|2 e��
P2

b2 , | ZZ(P )|2 = sinh
�
2⇡bP

�
sinh

⇣
2⇡P
b

⌘
. (3.23)

For small b this integral is dominated by states with P of order b. Therefore we define
P = kb and take the b ! 0 limit; we recover the result (3.20).

4 Schwarzian correlators from ZZ branes

In this section we will exploit the relationship between the Schwarzian theory and Virasoro
CFT to compute finite temperature correlation functions of SL(2, R) invariant operators in
the Schwarzian theory. The simplest such operator is the Schwarzian itself. Its correlation
functions are completely fixed by symmetries and are described in Appendix A.

A more interesting class of correlation functions are those involving the bi-local operators

O`(⌧1, ⌧2) ⌘

 p
f 0(⌧1)f 0(⌧2)

�

⇡
sin ⇡

�
[f(⌧1) � f(⌧2)]

!2`

. (4.1)

These operators naturally live on the 2D space K parametrized by pairs of points (⌧1, ⌧2) on
the thermal circle. We will call K kinematic space, since it plays an analogous geometrical
role as the kinematic space associated with 2D holographic CFTs [36, 37].

To exhibit the geometry of kinematic space K, let us – motivated by the form (4.1) of
the bi-local operators – associate to any point (u, v) 2 K a classical field �cl(u, v) via

e�cl(u,v) =

p
f 0(u)f 0(v)

�

⇡
sin ⇡

�
[f(u) � f(v)]

. (4.2)

This field satisfies the Liouville equation

@u@v�(u, v) = e2�(u,v). (4.3)

Hence kinematic space K naturally comes with a constant curvature metric ds2 = e2�(u,v)dudv,
and looks like a hyperbolic cylinder with an asymptotic boundary located at u = v. Note,
however, that the metric on kinematic space is now a dynamical quantity that depends on
the dynamical di↵eomorphism f(⌧).
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Figure 4: Geometry of the classical Liouville background between two ZZ branes.

4.1 ZZ branes and kinematic space

Given the similarity between the two geometric structures, it is tempting to look for a direct
identification between the kinematic space K and the geometry of Liouville CFT bounded
by two ZZ-branes. To make this idea more explicit, let us consider Liouville CFT with ZZ
branes placed at the spatial positions � = 0 and � = ⇡. The time direction is parametrized
by ⌧ . The action describing this system is

S =
c

192⇡

Z
d⌧

Z
⇡

0

d�
⇥
(@�)2 + 4µe2�

⇤
(4.4)

For our application, the only role of the Liouville CFT is to provide a convenient geometrical
description of the Virasoro partition function and conformal blocks. Indeed, Liouville theory
is known to be equivalent to the geometric Lagrangian associated with the symplectic form
! on Di↵(S1) quoted in the previous section.8

We introduce the light-cone coordinates u = ⌧ + � and v = ⌧ � �. We are interested
in the limit c ! 1. In this limit, the functional integral localizes on the space of classical
solutions to the Liouville equation of motion. The boundary conditions of � are that the
regions near � = 0 and � = ⇡ corresponds to the asymptotic regions of a hyperbolic cylinder.
It is shown in [38] that the lowest energy solution is 4µ4e2� = sin�2 �. Written in the form
ds2 = e2�dudv this describes a hyperbolic geometry of the form shown in Figure 4.

As explained e.g. in [39], the most general classical solution of Liouville theory can
be obtained by starting with a representative �(u, v) for a given conformal class and then
apply a general conformal transformation e2�(u,v)

! f 0(u)f 0(v)e2�(f(u),f(v)). The most general
solution thus takes the form given in equation (4.2), after performing a rescaling that maps
the distance between the ZZ-branes from ⇡ to �/2. These solutions are all isomorphic to
the geometry shown in Figure 5. We can interpret this 2d space as a kinematic space of the
Schwarzian theory. Note, however, that in our case, the kinematic space is in fact dynamical.

8The parameters Q = b + b�1 and P used in the expressions (3.15) of the central charge c and the
conformal dimension � are naturally identified with the background charge of the Liouville CFT and the
‘Liouville momenta’ of the vertex operators VP with conformal dimension �.
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Liouville theory on hyperbolic cylinder à reduces to dilaton gravity for c à oo

e`�(u,v)

u v

Figure 5: The kinematic space of the Schwarzian theory. The bi-local operator (4.1) in the 1D

QM is represented by a local Liouville CFT vertex operator in the 2D bulk. The boundary of

the kinematic space corresponds to the limit where the two end-points of the bi-local operator

coincide.

Finally, we remark that the equivalence between the Schwarzian and the large c limit of
Liouville CFT is of course not surprising. It is well-known that the Liouville stress tensor
T = 1

2(�
0)2 + �00 reduces to the Schwarzian derivative when evaluated on a general classical

solution of the form (4.2). This observation can be used to show that Liouville lagrangian
in a combined large c and DLCQ limit reduces to the Schwarzian action.

4.2 Two-point function

In this section we will study the correlation function of a single bi-local operator

G`(⌧1, ⌧2) = hO`(⌧1, ⌧2)i. (4.5)

It is here that our method really gets extra mileage compared to other approaches. From the
saddle-point solution (4.2) for the field � we see that the Liouville vertex operators e2`�(u,v)

and the bi-local operators O`(⌧1, ⌧2) placed between two ZZ branes become identical, if we
identify u = ⌧1 and v = ⌧2. Motivated by this, we will propose the following identification
between the correlation functions of both theories

Insertion of O`(⌧1, ⌧2) in Schwarzian $ Insertion of V` = e2`�(⌧1,⌧2) in Liouville CFT

In the rest of this section we will present detailed evidence in support of this proposal.

Now we will compute the one-point function of the operator V` = e2`�(⌧1,⌧2) between
ZZ-branes. Via the method of images, we can map this one-point function to the chiral
two-point function on a torus. There is no known closed expression for this two-point
function for finite c. Nevertheless we will be able to compute it in the limit relevant for
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We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧2�⌧1)k2
1�(��⌧2+⌧1)k2

2
�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k
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The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
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s
�(` ± ik1 ± ik2)

�(2`)
. (1.19)
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Two point function
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1.1 Overview of results

We will study the correlation functions of the following bi-local operators

O`(⌧1, ⌧2) ⌘

 p
f 0(⌧1)f 0(⌧2)

�

⇡
sin ⇡

�
[f(⌧1) � f(⌧2)]

!2`

. (1.12)

We can think of this expression as the two-point function O`(⌧1, ⌧2) = hO(⌧1)O(⌧2)iCFT of
some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or equiv-
alently, as the boundary-to-boundary propagator of a bulk matter field coupled to the 2D
dilaton-gravity theory in a classical black hole background.

The bi-local operator (1.12) is invariant under the SL(2, R) transformations (1.4). This
in particular implies that O` commutes with the Hamiltonian H of the Schwarzian theory

[H, O`(⌧1, ⌧2)] = 0. (1.13)

So the bi-local operators are diagonal between energy eigenstates. We will see that the time-
ordered correlation functions of O`(⌧1, ⌧2) indeed only depend on the time-di↵erence ⌧2 � ⌧1.

Below we will give the explicit formulas for the correlation function with one and two
insertions of the bi-local operator O`. We will call these the two-point and four-point func-
tions, since they depend on two and four di↵erent times ⌧i, respectively. In the holographic
dual theory they correspond to the AdS2 gravity amplitude with one and two boundary-to-
boundary propagators. Our eventual interest is to compute the out-of-time ordered (OTO)
four point function, which exhibits maximal Lyapunov behavior and contains the gravita-
tional scattering amplitudes of the bulk theory as an identifiable subfactor.

Two-point function

The two-point function at finite temperature is defined by the functional integral with
a single insertion of the bi-local operator

⌦
O`(⌧1, ⌧2)

↵
=

1

Z

Z
Df e�S[f ]

O`(⌧1, ⌧2) = ⌧2 ⌧1
` (1.14)

Here we introduced a diagrammatic notation that will be useful below.

The two-point function of the Schwarzian theory at zero temperature was obtained in
[21]. As we will show in section 4, the generalization of their result to finite temperature is
given by a double integral over intermediate SL(2, R) representation labels k1 and k2

⌦
O`(⌧1, ⌧2)

↵
=

Z 2Y

i=1

dµ(ki) A2(ki, `, ⌧i). (1.15)
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Semi-classical interpretation of two-point function

X1

X2

·2 ·1

fl2 fl1

◊2 ◊1

„

Figure 3: The curve that maximizes the action with two operator insertion (red dots) at ·1 = ·

and ·2 = — ≠ · . The horizons of each side are located at the black dots.

2.1 Backreaction
In this subsection we will extract the geometric interpretation of our saddle-point equa-
tions (2.7) and compare our results with the action described in [15]. In [15], the
authors exploit the fact ([13] and [14]) that the Schwarzian action associated to the
reparametrization mode f(u), u œ (0, —) is proportional to the area enclosed by the
curve (fl(u), ◊(u) = 2fi

—
f(u)) in a hyperbolic space with metric

ds2 = dfl2 + sinh2 fl d◊2 , (2.12)

where fl(u) is determined from the constraint that the induced metric is guu = 1/‘2, with
‘ a small cut-o� scale. This describes a cut-o� version of the Poincare disk in Euclidean
signature. The Schwarzian action can be recast as a geometric problem regarding the
boundary particle as

≠S = ≠C
⁄

du Sch
A

tan fi

—
f(·), ·

B

+ ¸ log f Õ(u1)f Õ(u2)
1
sin fi(f(u1)≠f(u2))

—

2
2

(2.13)

ƒ ≠C

‘

C

(A ≠ L + 2fi) + ‘¸

C
log

1
2‘2 cosh D(X1, X2)

2D

(2.14)

where D(X1, X2) is the geodesic distance between the location of the insertions X1, X2.
The approximation is valid when the cut-o� ‘ π 1 so that fl(u) is large. A denotes the
area enclosed by the trajectory of the boundary particle, and L ≥ — its length.

For ¸ π C we can neglect the term in the action depending on the geodesic distance
between X1 and X2. Then the curve that minimizes the area with a fixed length is given
by a circle inside the Poincare disk. This maps to Lorenzian signature to a black hole

12

2 Space Time Geometry of PETS

In this section our interest is to determine the holographic dual geometry described by
the partially entangled thermal states, in the semiclassical regime. One approach would
be to start from the Jackiw-Teitelboim model [17, 18, 20, 21]. As mentioned above, this
JT model can be recast as the mechanics of a charge boundary particle in a magnetic field
[13] (see also [14] and [15]). Here we will follow a somewhat di�erent route: we will start
from the exact correlators of the low energy e�ective theory of the SYK model, given by
Schwarzian quantum mechanics, computed in [22]. We then take their semiclassical limit
[23] and derive the semi-classical space time geometry from the resulting expression. As
we will see, this procedure is remarkably e�cient.

We will denote the JT dilaton by �. The coupling constant that appears in the
Schwarzian action is C = �r

8fiGN
, with �r = ‘�b the renormalized boundary dilaton value.

In SYK, the coupling C corresponds to the heat capacity C = –SN/J , with –S an
order one constant [7, 9]. For the Schwarzian action we follow the notation in [22]. We
summarize the coordinates and our conventions in Appendix B. In the following, we will
parametrize the energy E and thermal entropy S of a finite energy state by means of a
dimensionless ‘momentum’ variable k via

E(k) = k2

2C
, S = S0 + 2fik, (2.1)

where S0 denotes the microscopic SYK ground state entropy.
As explained in the Introduction, the partition function associated with a PETS is

given by the two-point function of two operators of dimension ¸. The exact two-point
function obtained in [22] can be written as 8

ÈO(·)O(0)Í— =
⁄ Ÿ

i=1,2

dkifl(ki) e≠ k2

1

2C ·≠ k2

2

2C (—≠·)
�(¸ ± ik1 ± ik2)

�(2¸) , (2.2)

=
⁄ Ÿ

i=1,2

dkid◊i e≠I(ki,◊i,·,¸), (2.3)

where the ‘action’ appearing in the exponent is given by

I(ki, ◊i, ·, ¸) =
ÿ

i=1,2

A
k2

i

2C
·i + ◊iki ≠ log fl(ki)

B

+ ¸ log
A

cos ◊1

2 + cos ◊2

2

B
2

+ I0(¸), (2.4)

and we defined ·1 = · , ·2 = — ≠ · and the density of states fl(k) = 2k sinh 2fik. This
second way of expressing the two-point function will be very useful below. We will refer

8
The notation ± inside the Gamma function means one should take a product over all signs combi-

nations. See [22] for more details.
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We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧2�⌧1)k2
1�(��⌧2+⌧1)k2

2
�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k

= e� k
2 (⌧2�⌧1) ,

k2

k1
` = �`(k1, k2) . (1.18)

The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
energy eigenstate with energy E = k2. Each vertex corresponds to a factor

�`(k1, k2) =

s
�(` ± ik1 ± ik2)

�(2`)
. (1.19)
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�(` ± ik1 ± ik2)
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The exact non-perturbative answer for the 2n-point functions 

can be summarized via a simple set of diagrammatic rules:

`propagator’ `vertex’



This vertex factor represents the matrix element of each endpoint of the bi-local operator
between the corresponding two energy eigenstates.

Time ordered 4-point function

The time-ordered 4-point function comes in di↵erent types, depending on the ordering
of the four di↵erent times. The simplest ordering is

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
=

⌧3

⌧2

⌧4

⌧1`1

`2

(1.20)

where we assume that the four times are cyclically ordered via ⌧1 < ⌧2 < ⌧3 < ⌧4. This
ordering ensures that the legs of the two bi-local operators do not cross each other. This
time-ordered 4-point function is given by a triple integral over intermediate momenta

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
=

Z 3Y

i=1

dµ(ki) A4

�
ki, `i, ⌧i

�
. (1.21)

The momentum amplitude is represented by the diagram

A4

�
ki, `i, ⌧i

�
= ksks

`1

`2

k1

k4

(1.22)

Here we took into account the aforementioned result (1.13) that the bi-local operators com-
mute with the Hamiltonian, so that the same energy eigenstate (labeled by the momentum
variable ks) appears on both sides of each bi-local operator.

Applying the Feynman rules formulated above, we find that the momentum amplitude
of the time-ordered four point function reads

A4

�
ki, `i, ⌧i

�
= e�k

2
1(⌧2�⌧1)�k

2
4(⌧4�⌧3)�k

2
s(��⌧2+⌧3�⌧4+⌧1) �`1(k1, ks)

2�`2(ks, k4)
2. (1.23)

In section 4, we will explicitly compute the four-point function from the relationship between
the Schwarzian and 2D CFT and confirm that this is indeed the correct result.1

1Note that the amplitude (1.23) factorizes into a product of two 2-point amplitudes

A4

�
ki, `i, ⌧i

�
= e�k

2
s A2

�
k1, ks, `1, ⌧21

�
A2

�
k4, ks, `2, ⌧43

�
(1.24)

and thus indeed only depends on the two time di↵erences ⌧21 = ⌧2 � ⌧1 and ⌧43 = ⌧4 � ⌧3, as dictated by
equation (1.13).
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OTO 4-point function

Finally we will turn to our main interest, the out-of-time-ordered 4-point function [2].
We will diagrammatically represent the OTO 4-point function as

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
OTO

=

⌧2

⌧3

`2 `1

⌧4

⌧1

(1.25)

where in spite of their new geometric ordering along the circle, we in fact assume that the
four time instances continue to be ordered according to ⌧1 < ⌧2 < ⌧3 < ⌧4. Operationally, we
define the OTO correlation function via analytic continuation starting from the time ordered
correlation function with the ordering ⌧1 < ⌧3 < ⌧2 < ⌧4 as indicated by the above diagram.
Since for this configuration, the legs of the bi-local operators do in fact cross, the resulting
time ordered 4-point function di↵ers from the analytic continuation of the uncrossed 4-point
function (1.23).

In section 5, we will show that the OTO correlation function can be expressed as an
integral over four momentum variables

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
OTO

=

Z 4Y

i=1

dµ(ki) A
OTO
4

�
ki, `i, ⌧i

�
, (1.26)

where the momentum space amplitude is represented by the following diagram (to avoid
clutter, we again suppressed the times ⌧i labeling the end points of the bi-local operators)

A
OTO
4

�
ki, `i, ⌧i

�
= kskt

`2 `1

k1

k4

(1.27)

Note that we now have four di↵erent momentum variables ki. The correlation function will
indeed depend on all four time di↵erences ⌧i+1 � ⌧i.

The final answer for the momentum amplitude of the OTO 4-point function reads

A
OTO
4

�
ki, `i, ⌧i

�
= e�k

2
1(⌧2�⌧1)�k

2
t (⌧3�⌧2)�k

2
4(⌧4�⌧3)�k

2
s(��⌧4+⌧1) (1.28)

⇥ �`1(k1, ks)�`2(ks, k4)�`1(k1, kt)�`2(kt, k4) ⇥ Rkskt

⇥
k4
k1

`2
`1

⇤
.
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Four-point function

OTO four-point function

the locations (z1, z̄1) and (z2, z̄2) are chosen to be timelike separated, as indicated on the
left-hand side in Figure 9, so that their past lightcones do not intersect.

⌧1 ⌧2⌧4 ⌧3 ⌧1 ⌧4⌧3 ⌧2

Figure 9: The four-point function in the Schwarzian theory corresponds to a two-point function

of two bulk Liouville vertex operators. If the two bulk operators are timelike separated (left), the

correlation function and the end-points of the two bi-local operators are time ordered. If the two

bulk operators are spacelike separated (right), the legs of the bi-local operators (which follow 2D

light-cone directions starting from each vertex) cross each other. Time-ordered and out-of-time

ordered correlation functions are thus related by the CFT monodromy matrix that relates the

timelike separated and spacelike separated two-point functions.

ksks

`1

`2

k1

k4

⌧3

⌧2

⌧4

⌧1

kskt

`2 `1

k1

k4

⌧2

⌧3

⌧4

⌧1

Figure 10: The diagrammatic representation of the two types of four-point functions. The left

diagram depicts the time-ordered four-point function (5.1) with ⌧1 < ⌧2 < ⌧3 < ⌧4. The diagram

on the right represents the out-of-time ordered four point function: in contrast with the geometric

ordering, we assume that the four time instances are still ordered as ⌧1 < ⌧2 < ⌧3 < ⌧4. The OTO

correlation function is defined via analytic continuation from the time-ordered correlation function.

As before, we can go to the closed string channel and write the four point function as

G`1`2 =

Z
dPdQ  †

ZZ(P ) ZZ(Q) hP |V`1(z1, z̄1)V`2(z2, z̄2)|Qi. (4.28)
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Comparing with the diagram (1.27), we recognize the same propagators and vertex fac-
tors as before. However, the momentum amplitude now also contains an additional factor
Rkskt

⇥
k4
k1

`2
`1

⇤
, which takes into account the e↵ect of the two crossing legs in the diagram

(1.27). From the holographic dual perspective, it represents the scattering amplitude of
particles in the AdS2 black hole background [1, 44]. Computing this crossing kernel is one
of the main goals of this paper. We will describe this computation in section 5.

The crossing kernel

The crossing kernel enters as a new entry in the Feynman rules for the Schwarzian correlation
function. It relates the crossed diagram to the uncrossed diagram via

kskt
`2 `1

k1

k4

= Rkskt

⇥
k4
k1

`2
`1

⇤
kskt

`1

`2

k1

k4

(1.29)

where the diagram on the right-hand side is evaluated according to the Feynman rules given
in equation (1.18). An alternative name for the crossing kernel is the R-matrix. The matrix
Rkskt in fact depends on six numbers, k1, k4, ks, kt, `1 and `2, that all label the spin of a
corresponding sextuplet of representations of SL(2, R). It satisfies the unitarity property

Z
dµ(k) RkskR

†
kkt

=
1

⇢(ks)
�(ks � kt), ⇢(k) = 2k sinh(2⇡k). (1.30)

The explicit form of the R-matrix can be found in several di↵erent ways. The most
convenient method uses the relation between the Schwarzian QM and 2D CFT. In section
5 we will compute Rkskt by taking a large c limit of the CFT R-matrix that expresses the
monodromy of 2D conformal blocks under analytic continuation over the lightcone. This
2D crossing kernel is explicitly known, thanks to the work of Ponsot and Teschner [24], see
also [25, 26]. As shown in [24], the 2D kernel can be expressed as a quantum 6j-symbol of
the non-compact quantum group Uq(sl(2, R)). Taking the large c limit of their formulas, we
obtain that

Rkskt

⇥
k4
k1

`2
`1

⇤
= W(ks, kt; `1 + ik1, `1 � ik1, `2 � ik4, `2 + ik4) (1.31)

⇥

p
�(`1 ± ik1 ± iks)�(`2 ± ik4 ± iks)�(`2 ± ik1 ± ikt)�(`1 ± ik4 ± ikt)

where W(a, b, c, d, e, f) denotes a so-called Wilson function, defined as a particular linear
combination of two generalized hypergeometric functions 4F3. The explicit formula is given
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OTO 4-point function
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We will diagrammatically represent the OTO 4-point function as

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
OTO

=

⌧2

⌧3

`2 `1

⌧4

⌧1

(1.25)

where in spite of their new geometric ordering along the circle, we in fact assume that the
four time instances continue to be ordered according to ⌧1 < ⌧2 < ⌧3 < ⌧4. Operationally, we
define the OTO correlation function via analytic continuation starting from the time ordered
correlation function with the ordering ⌧1 < ⌧3 < ⌧2 < ⌧4 as indicated by the above diagram.
Since for this configuration, the legs of the bi-local operators do in fact cross, the resulting
time ordered 4-point function di↵ers from the analytic continuation of the uncrossed 4-point
function (1.23).

In section 5, we will show that the OTO correlation function can be expressed as an
integral over four momentum variables

⌦
O`1(⌧1, ⌧2) O`2(⌧3, ⌧4)

↵
OTO

=

Z 4Y

i=1

dµ(ki) A
OTO
4

�
ki, `i, ⌧i

�
, (1.26)

where the momentum space amplitude is represented by the following diagram (to avoid
clutter, we again suppressed the times ⌧i labeling the end points of the bi-local operators)

A
OTO
4

�
ki, `i, ⌧i

�
= kskt

`2 `1

k1

k4

(1.27)

Note that we now have four di↵erent momentum variables ki. The correlation function will
indeed depend on all four time di↵erences ⌧i+1 � ⌧i.

The final answer for the momentum amplitude of the OTO 4-point function reads

A
OTO
4

�
ki, `i, ⌧i

�
= e�k

2
1(⌧2�⌧1)�k

2
t (⌧3�⌧2)�k

2
4(⌧4�⌧3)�k

2
s(��⌧4+⌧1) (1.28)

⇥ �`1(k1, ks)�`2(ks, k4)�`1(k1, kt)�`2(kt, k4) ⇥ Rkskt

⇥
k4
k1

`2
`1

⇤
.
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R-matrix

To obtain the out-of-time-ordered four point function we make the above substitution
inside of the integral expression (5.5). This leads to the final expression given in equation
(5.3), where we define the Schwarzian R-matrix via

Rkskt

⇥
k4
k1

`2
`1

⇤
=

n
`1 k4 ks

`2 k1 kt

o
. (5.12)

With this definition, the R-matrix is naturally a unitary operator relative to the spectral
measure dµ(k).

5.2 Schwarzian 6j-symbols

In this section we present the explicit expression for the Schwarzian limit of the 6j-symbols
of the Virasoro CFT. A general expression for this quantity at finite c, and its relation with
the monodromy of the 2D conformal blocks, was found by B. Ponsot and J. Teschner in [24].
For our purpose, we need to take the large c limit outlined above. Details of the calculation
are given in Appendix B.2. After some straightforward algebra, one arrives at the somewhat
daunting looking integral expression (B.28). The integral can be done by the method of
residues. The final result can be organized in the following symmetric expression

n
`1 k2 ks

`3 k4 kt

o
=

p
�(`1 ± ik2 ± iks)�(`3 ± ik2 ± ikt)�(`1 ± ik4 ± ikt)�(`3 ± ik4 ± iks)

⇥ W(ks, kt; `1 + ik4, `1 � ik4, `3 � ik2, `3 + ik2), (5.13)

where we define �(x ± y ± z) as a shorthand for the product of the gamma function with
four combinations of signs. The function that appears in the right hand side is a rescaled
version of the Wilson function introduced by W. Groenevelt [27]. The original function
introduced in [27] is denoted by W(↵, �; a, b, c, d) = �↵(�; a, b, c, 1�d) and it is proportional
to a generalized hypergeometric function 7F6 evaluated at z = 1 whose coe�cients depend
on ↵, �, a, b, c and d.

Given that the above expression was obtained as a limit of the quantum 6j-symbol,
it is natural to suspect that the result can be interpreted as a classical 6j-symbol. The
above indeed matches with the 6j-symbol associated to the Lie algebra su(1, 1) found by
W. Groenevelt [27]. The heavy operators with label ki correspond to the principal unitary
series representations of su(1, 1), while the light operators `i correspond to the discrete
series.13 The expression (5.12) enjoys tetrahedral symmetry that acts by permutations on

13Note that even though SU(1, 1) and SL(2,R) are isomorphic, their tensor categories are di↵erent and
they have di↵erent 6j-symbols.
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Groenevelt

W = Wilson function
linear combination of 4F3

The R-matrix of the Schwarzian is found to be equal to a classical 6j-symbol of SU(1,1)

Matches with the gravitational shockwave amplitude



the locations (z1, z̄1) and (z2, z̄2) are chosen to be timelike separated, as indicated on the
left-hand side in Figure 9, so that their past lightcones do not intersect.

⌧1 ⌧2⌧4 ⌧3 ⌧1 ⌧4⌧3 ⌧2

Figure 9: The four-point function in the Schwarzian theory corresponds to a two-point function

of two bulk Liouville vertex operators. If the two bulk operators are timelike separated (left), the

correlation function and the end-points of the two bi-local operators are time ordered. If the two

bulk operators are spacelike separated (right), the legs of the bi-local operators (which follow 2D

light-cone directions starting from each vertex) cross each other. Time-ordered and out-of-time

ordered correlation functions are thus related by the CFT monodromy matrix that relates the

timelike separated and spacelike separated two-point functions.

ksks

`1

`2

k1

k4

⌧3

⌧2

⌧4

⌧1

kskt

`2 `1

k1

k4

⌧2

⌧3

⌧4

⌧1

Figure 10: The diagrammatic representation of the two types of four-point functions. The left

diagram depicts the time-ordered four-point function (5.1) with ⌧1 < ⌧2 < ⌧3 < ⌧4. The diagram

on the right represents the out-of-time ordered four point function: in contrast with the geometric

ordering, we assume that the four time instances are still ordered as ⌧1 < ⌧2 < ⌧3 < ⌧4. The OTO

correlation function is defined via analytic continuation from the time-ordered correlation function.

As before, we can go to the closed string channel and write the four point function as

G`1`2 =

Z
dPdQ  †

ZZ(P ) ZZ(Q) hP |V`1(z1, z̄1)V`2(z2, z̄2)|Qi. (4.28)
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of the two operators cross each other as indicated on the right in Figure 9. From the point of
view of the 2D CFT, this means that one of the chiral conformal blocks has been analytically
continued to an OTO conformal block

GOTO
`1`2

= hZZ|V`1(z1, z̄1)V`2(z2, z̄2)|ZZiOTO, (5.4)

=

Z
dPdQ  †

ZZ(P ) ZZ(Q) hP |V`1(z1, z̄1)V`2(z2, z̄2)|QiOTO.

where the integrand factorizes in terms of CFT kinematic data as

hP |V`1(z1, z̄1)V`2(z2, z̄2)|QiOTO = (5.5)
Z

dPs C(�P, `1, Ps) C(�Ps, `2, Q) F
OTO
Ps

⇥
`1
P

`2
Q

⇤
(z1, z2) FPs

⇥
`1
P

`2
Q

⇤
(z̄1, z̄2)

Here the OTO label indicates that we have applied a specific monodromy transformation
to the 2D conformal block. The e↵ect of this monodromy transformation in the Schwarzian
limit can be found in the following way.

The argument of the s-channel conformal block is z = z1/z2, which goes to zero in the
time-ordered case. Inserting the two operators in opposite order gives z0 = 1/z = z2/z1 !

1. The 2D conformal block conformal block behaves non-trivially in the limit where the
cross ratio becomes infinite. Even though we do not know the explicit expression for the
full conformal block, we can use the R-matrix transformation of Ponsot and Teschner

FPs [
2
1

3
4 ](z0) =

Z
dPt RPsPt

⇥
2
1

3
4

⇤
FPt [

3
1

2
4 ](1/z0) (5.6)

to extract its exact behavior in the large cross-ratio regime z0
! 1 by using the fact

that the conformal block inside the integral in (5.6) becomes trivial for z = 1/z0
! 0.

Inserting the transformed conformal block into (5.4) and (5.5), we obtain the momentum
integral representation of the out-of-time-ordered four-point function. The total calculation
procedure can be graphically represented as

GOTO
`1`2

=

Z
dPdQ  †

ZZ(P ) ZZ(Q) ⇥

Z
dPs

P

Q

Ps

`1

`2
P

Q

Ps (5.7)

=

Z
dPdQ  †

ZZ(P ) ZZ(Q) ⇥

Z
dPsdPt RPsPt

P

Q

Ps

`1

`2
P

Q

Pt
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SL(2, Fl) action (3.7). So, in this interpretation, the reason for the apparent
non-covariance of the SL(2, Fl) theory (3.7) is that it corresponds to a non-covariant
gauge-fixed version of the covariant gravity theory (6.11). Moreover, it also gives an
“explanation” for the SL(2, Fl) symmetry as being the remnant of (2 + 1)-
dimensional Lorentz covariance. Thus, it indeed seems that there is a relationship
between two-dimensional and (2 + 1)-dimensional quantum gravity!
In fact, this relation with (2 + 1)-dimensional gravity leads to an interesting

speculation. Namely, the pure Einstein action (6.8) can be written as the difference
of the two SL(2, Fl) CS actions (6.11):

4kSE[e, w] = S2k,k[e + ~] — ~2k, _k[e — w] . (6.12)

Thus the Hilbert space of the Einstein theory splits as the tensor product of the
two Hilbert spaces of the SL(2, Fl) theories, which we have shown to be given by
the space of Virasoro conformal blocks. But, this means that, if we call the states
of the e + w theory left-moving and of the e — w theory right-moving, an arbitrary
Hilbert state of the (2 + 1)-dimensional gravity theory

(6.13)

can be decomposed into a sum of left and right conformal blocks as

‘P= ~N’~’Pt 0 ‘Pf, (6.14)
I, J

where we recognize the structure of a CFT partition function! It would be very
interesting if this intriguing correspondence is more than just superficial, but to
settle this will require a careful study of all the consistency requirements on ‘P.

Finally, a short comment on one of the many issues left undiscussed so far,
namely whether the coefficient k in front of the SL(2, Fl) action (3.7) has to take
certain discrete values or whether it can vary continuously. In the topology we
considered the theory, namely .~X Fl, there is no need for requiring k to be
quantized, but to define SL(2, Fl) Chern—Simons theory in more general topologies
k has to take integer values. In our opinion, however, it is not clear whether this
settles the issue, since it might well be that the real covariant (2 + 1)-dimensional
theory we are considering is not SL(2, Fl) CS theory but (2 + ])-dimensional gravity.

I would like to thank M. Bershadski, S. Carlip, J. Cohn, S. Della Pietra, G.
Felder, G. Moore, H. Ooguri, N. Seiberg, R. Silvotti and E. Witten for useful
comments. I am especially grateful to R. Dijkgraaf and E. Verlinde for stimulating
discussions and some very useful remarks. Finally, I would like to thank the ETH
in Zurich and the Aspen Center of Physics for hospitality while part of this work
was done.
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We formulate the geometric quantization of Teichmüller space by using its relation with
SL(2, ~) Chern—Simons gauge theory and show that the physical state conditions arising in this
formalism are equivalent to the Virasoro Ward identities satisfied by the conformal blocks in
CFT. We further show that transition amplitudes between the physical states of this quantum
system have a direct correspondence with covariant amplitudes of two-dimensional induced
quantum gravity. Possible applications of these results to Virasoro modular geometry and
(2+ 1)-dimensional quantum gravity are indicated.

1. Introduction

An important step forward in the study of two-dimensional (rational) conformal
field theories has been the recent realization that the conformal blocks of a
(R)CFT can be treated as states in a quantum mechanical Hubert space, on which
one can act with certain operators [1—31.In the special case of the WZNW models,
the quantum system obtained in this way has been recognized by Witten as the
(2 + 1)-dimensional gauge-theory based on the Chern—Simons action [31.Quantiz-
ing the CS theory in the temporal gauge, the physical Hubert states are identified
with the Kac—Moody conformal blocks and the gauge-invariant operators acting on
them are the (2 + 1)-dimensional Wilson lines [3].
Subsequent investigations [4,5] of this quantum system revealed also another

interesting relationship. Namely in the (2 + 1)-dimensional formulation it is a
natural step to consider the inner product on the space of Kac—Moody blocks, and
in the holomorphic polarization this inner product turns out to have a direct
correspondence with the partition function of the gauged WZNW model [4,51.
This observation establishes an intriguing dual relation between WZNW theory

Research supported by NSF Grant PHY-80-19754.
Bitnet address: hlv6Ei~pupthy.princeton.edu.

0550-3213/90/$03.50© Elsevier Science Publishers By.
(North-Holland)

We study the geometric quantization of the [phase space of 2+1-d gravity with L < 0] 
and show that the physical state conditions take the form of conformal Ward identities 
that define the space of Virasoro conformal blocks in 2-d CFT.
Possible applications of these results to the [conformal bootstrap] are indicated.

Teichmuller space
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Conformal blocks are multi-valued
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blocks. In this notation, the conformal bootstrap equation (75) takes a much simpler form

X

a

�� a

⇥
2 3

1 4

⇤
(z)

��2 =
X

b

�� b

⇥
3 4

2 1

⇤
(1� z)

��2 (78)

In the graphical notation introduced above, we may represent this equation as

a" b"
Σ" = Σ"
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b"a"

1"
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3"
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4"
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=" R ab"

1"

2" 3"
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a"
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2" 3"

4"

b"

2"

(79)

The unitary bootstrap equation (78) seems much simpler, and thus a priori much less

instructive, than the original bootstrap equation (75). The two equations, however, are

completely equivalent.

We will refer to our definition  a(w, z) as the unitary normalization of 2D conformal

blocks. The factorization formula (77) is indeed suggestive of an interpretation of the blocks

 a(w, z) as orthonormal states in some suitable Hilbert space with inner product

⌦
 a1

�� a2

↵
= �a1a2 . (80)

This interpretation of conformal blocks as Hilbert states will be a central theme of our story.

3.3 Fusion and braiding

In view of our proposed interpretation of the conformal blocks  a as orthonormal basis

states in some Hilbert space H, it is natural to look for unitary operators that act on H.

Two examples of such a unitary operators are the fusion matrix Fab and braid matrix, or R

matrix Rab. These implement the two basic crossing operations
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Symplectic form <=> c and z are canonically dual

Hyperbolic""Ellip3c""

Figure 3: Liouville vertex operators fall into two classes. Those with � < 1

4
Q2 create elliptic

solutions (punctures), those with � > 1

4
Q2 create hyperbolic solutions (macroscopi holes) [19].

right Virasoro algebra with conformal weights �± = ↵±(Q � ↵±). The physical range of

positive conformal weights splits into two separate regimes of Liouville momenta

↵± 2 [0, 1
2
Q ] [

�
1

2
Q+ iR+

�
. (12)

The Liouville equation prescribes that the metric has constant negative curvature every-

where except at the location of the vertex operators. Vertex operators with real Liouville

momentum in the interval [0, 1
2
Q] create elliptic solutions, which are local cusps specified by

a patching function in the elliptic conjugacy class of the isometry group G. Vertex operators

with complex momenta of the form 1

2
Q+ iR+ create hyperbolic solutions, which are macro-

scopic holes in 2-D space identified with the spatial section of BTZ black hole geometries (as

shown in Fig. 1 and Fig. 3.). We may parametrize the Liouville momenta in this range as

↵± = 1

2
Q+ ip±, �± = p2

±
+ 1

4
Q2. (13)

These relations, combined with Equations (7) -(8), specify a precise dictionary between the

classical data of the BTZ black hole and the quantum data of Liouville theory. For later

reference, we make note that the semiclassical regime p± � b � 1, the relations between

the Liouville momenta p± and the conjugacy class of the holonomies h± in (6) simplify to

r± = 4b(p+ ± p�), b2 = `/4 . (14)

Most of the above dictionary was known before the discovery of gauge/gravity duality. An

important insight from AdS/CFT is that the bulk theory can not be pure gravity. Gravity in

2+1 dimensions describes how massive localized excitations interact at long distances, but it

does not specify the hyperfine structure of the excitation spectrum of the bulk string theory.

The situation in the 1+1-D boundary theory is analogous. Liouville theory has a con-

tinuous spectrum of conformal dimensions, and is therefore capable of describing any set of

Virasoro representations. However, it does not prescribe the spectrum of some given unitary

CFT. Liouville theory is similar to a non-compact space with a continuous spectrum of wave

solutions; choosing a specific CFT realization of AdS3 is like putting the wave solutions in a

finite box, so that the spectrum becomes discrete and countable.

6

2D Virasoro CFT  =  2D Quantum Hyperbolic Geometry
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���

↵
of M�, satisfying

l̂�

���
↵
= l�

���
↵
. (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵

↵
(52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i

~ S↵�(l↵, l�)
⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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Figure 7: The variables L↵, L�, L� and L⌧ are associated with four topologically distinct
loops each of which surrounds a hole and puncture (left) or two punctures (right).

In our case, there are two possible choices for the length coordinate: l↵ or l�. Each have

their own canonical conjugate ‘twist’ variable ⌧↵ and ⌧� defined such that

⌦WP = dl↵ ^ d⌧↵ = dl� ^ d⌧�

(49)
{l↵, ⌧↵}WP = {l�, ⌧�}WP = 1

In terms of the complex geometry, a shift in the twist variable ⌧↵ ! ⌧↵ + � acts by cutting

the 2D surface open along the corresponding cycle �↵, rotating one side by an angle �, and

gluing the two parts back again. The result that the length and twists are Darboux variables

was first shown by Wolpert [39]. As we will see shortly, in terms of our scattering problem,

⌧↵ is a direct measure of the time-di↵erence t0 � t1 between the would-be arrival time t0 of

particle A and the moment t1 when particle B is sent in.

2.3 Scattering matrix

We are finally ready to define and compute the gravitational scattering amplitude between

the outgoing particle A and the infalling particle B in the BTZ black hole background. First

we specifiy the initial and final states.

The initial state decribes three objects: a BTZ black hole of mass M , particle A that

travels just outside of its horizon, and particle B that is falling in from asymptotic infinity.

Particle A adds a finite amount of energy ↵ to the black hole mass: from a distance, the

geometry look like a single black hole of mass M↵ = M + ↵. We take as a basis of initial

states the eigenstates
��↵
↵
of the total mass operator that measures M↵. So in particular

l̂↵

��↵
↵
= l↵

��↵
↵
. (50)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis
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Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state
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From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i

~ S↵�(l↵, l�)
⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.
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has already done for us at the semi-classical level in [19], and at the full quantum level
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~ S↵�(l↵, l�)
⌘
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Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set
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~ S↵�(l↵, l�)
⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
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A simple calculation now gives that (55) takes the form

� = ! � ↵ + 2↵(! � ↵)e(t↵�tR)
. (57)

with tR ' log(cosh(⇡R/`)) + const. We see that, apart from a di↵erent o↵ set of the

time delay (which can’t be fixed by the arguments presented here), there’s a precise match

with equation (12). This is not surprising, since both calculations are based on the same

classical action. The lesson learned, however, is that our physical interpretation of eqn

(55) as describing the gravitational scattering process is confirmed, and that our schematic

semi-classical analysis of the introduction has now been substantially refined.

Together with eqn (55) and its time reversed partner, eqns (54) uniquely specify the

scattering phase S↵�. Integrating (54) still looks like a substantial algebraic task. Given the

above geometric formulation of the problem, however, it is not surprising that the solution

can be found in terms of a natural geometric quantity. As announced in the introduction,

it turns out that the S↵�(l↵, l�) can (up to a trivial phase) be identified with the volume of

a hyperbolic tetrahedron,10 with dihedral angles `i, with i = 1, 2, 3, 4,↵, �.

S↵� = Vol
⇣
T

h
1 2 ↵

3 4 �

i⌘
(58)

Here all geodesic lengths li’s are real, except for the two lengths associated with the conical

defects: l2 = i✓2 and l4 = i✓4. The formula for S↵� is given in the Appendix.

This concludes the technical part of this section. It is straightforward to verify that the

above formula indeed reduces to the solution to eqns (16) in the limiting regime (57). We

end with a few comments about the physical interpretation of this result.

• As we will see in section 4, the semi-classical scattering matrix R↵� lifts to a full

unitary operator acting on the Hilbert space H0,4 spanned by all the energy eigen states
��↵

↵
.

This unitarity property follows from the identification between the volume of hyperbolic

tetrahedra and the quantum 6j-symbols of Uq(sl(2,R)), the q-deformed universal enveloping

algebra of SL(2,R). We will describe this correspondence in more detail in the next sections,

where we will show that R↵� is identical to the braid operator acting on the Hilbert space

H0,4 spanned by the Virasoro conformal blocks on the four punctured sphere.

• An important output of the unitary condition is that it prescribes the form of the inner

product, or equivalently, the spectral density ⇢(↵) of the Hilbert space H0,4. Given the form

10 More accurately, S↵� denotes the excluded volume of the knot-compliment of a tetrahedron.
This supports the interpretation that S↵� is equal to the Einstein action evaluated on the classical
BTZ space-time, with two conical defects, that describes the scattering process.
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radii R↵ and R� scales exponentially with the time di↵erences t↵ and t�

r
2 � 8(M +↵)`2 = 4`2e�(t↵�tR)

, t↵ ⌘ t0 � t1
(10)

r
2 � 8(M +�)`2 = 4`2e�(t��tR)

, t� ⌘ t̃1 � t̃0,

where  is the surface gravity and tR is a time delay, given by

 = R/`
2
, tR = log(R2

/`
2). (11)

Here we recognize the characteristic exponential redshift e↵ect near black hole horizons.
Combining eqns (9) and (10), one derives the following relations [29]

� = ! � ↵ + 2↵(! � ↵)e(t↵�tR)
, (12)

↵ = ! � � + 2�(! � �)e(t��tR)
. (13)

Eqn (12) determines � as a function of ↵ and the time di↵erence t↵. We see that, due to the
exponential growth in t↵, � quickly becomes bigger than !. Once this happens, eqn (13) no
longer yields a real solution for t�. This is not surprising: as seen from fig 1, when � > !

the energy of mode A becomes negative, indicating that its trajectory has been shifted to
behind the horizon.

Now let us replace particle A and particle B by quantum mechanical wave packets. As
explained in detail in [30], we should anticipate that the second quantized mode operators �A

and �B that create both asymptotic wave packets do not commute but satisfy an exchange
relation. For spherical wave-packets – which can be simultaneously localized in time and
energy – and in the leading order semi-classical limit, we expect that this exchange relation
takes the form

�
B

!�↵
(t1)�

A

↵
(t0) = e

i
~S↵� �

A

!��
(t̃0)�

B

�
(t̃1). (14)

Since �
A(t1) acts in the future of �B(t0), this relation is in perfect accord with causality. It

expresses the causal e↵ect that the trajectory of A, after its encounter with B, is shifted by
the specified amount, relative to its original trajectory. The time shifts can be computed
by a similar calculation as the one that gave us the relations (12)-(13). One finds that

t̃0 � t0=�1


log

⇣
! � �

↵

⌘
, t̃1 � t1 = �1


log

⇣
! � ↵

�

⌘
. (15)

Note that the time delay t̃0 � t0 indeed becomes infinite when � approaches !.
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Exchange relation for localized wave-packets

à contains the gravitational scattering amplitude
à spectral decomposition of OTO four-point function 
à scattering phase determined via geometric optics
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The purpose of this paper is to understand these exact correlation functions of the
Schwarzian theory better and in particular its semiclassical limit C ! 1, or equivalently
its high temperature limit. Our main result is to perform the matching between the semi-
classical limit of the exact correlators and the AdS2 calculation. Therefore before moving on
to the details we will quickly review this latter approach. The building block for this method
are the AdS wavefunctions, which we review around equation (2.13). It was understood [13]
that time ordered correlators are given simply by overlaps of these wavefunctions, and we
review the details in section 2. On the other hand, the out-of-time-ordered correlators are
not given simply by overlaps of wavefunctions: one also needs to include the Dray and ’t
Hooft expression for the shockwave S-matrix interaction [34], which we review in section 3.
We will show how this S-matrix naturally appears from the semiclassical limit of our exact
expressions. It is important to stress that we do not only show that the formula (1.2) is
consistent with maximal Lyapunov behavior, we recover the whole shockwave answer in the
eikonal limit, which is a more non-trivial statement and check of our formulas. As such, we
believe we are the first to find shockwaves ab initio from a quantum theory.

S = exp
⇣

i�

4⇡C
p�q+

⌘
, (1.7)

hV1W3V2W4i =

1Z

0

dq+

1Z

0

dp�  
†
1
(q+)�

†
3
(p�) S(p�, q+)  2(q+)�4(p�). (1.8)

This paper is organized as follows. Section 2 discusses two-point functions in the
Schwarzian theory and its semi-classical regime. Section 3 generalizes this discussion to
four-point functions, and in particular the OTO four-point function. This is our main re-
sult. We will demonstrate that we precisely agree with expressions derived from convolving
Kruskal wavefunctions with the shockwave S-matrix. Then in section 4 we further general-
ize the discussion to higher-point functions and multiple shockwaves, illustrating that only
shockwave interactions survive in the semi-classical limit. This section is augmented by
Appendix C which generalizes the Feynman rule decomposition of Schwarzian correlators
(given in [30]) to the most general case. Section 5 explores shockwaves from a 2d CFT
perspective, by utilizing the connection with 2d Liouville theory. This leads to quick and il-
lustrative derivations of shockwave expressions from 2d conformal blocks. Finally, in section
6 we take the semi-classical limit of two-point correlators where the mass of the insertion
also scales with C. The resulting expressions are compared to solutions of the Schwarzian
equations of motion, and provide non-trivial checks on our results. We comment on eigen-
value thermalization (ETH) in the Schwarzian theory from this perspective. Some technical
discussions are contained in appendices A and B.
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The OTO four point function is interesting because it encodes direct information about the

chaotic behavior of the quantum theory and about the gravitational scattering in the dual gravity

theory. Indeed, we can think of the two lines in the above diagrams as world lines of two bulk

particles, one that interpolates between V1 and V2 and one that connects W3 and W4. In the

OTO four point function, the two worldlines cross, indicating that the amplitude contains a non-

trivial gravitational scattering matrix. The physical characteristics of this gravitational shockwave

interaction can be deduced equally well from the position or the momentum space amplitudes.

It was shown in [29] that the momentum space amplitude for the exact OTO four-point function

in Schwarzian QM takes the following form

A(ki, ⌧i) = e
� i

2C
(k21⌧31+k2t ⌧23+k24⌧42+k2s(��⌧41)) �(`1+ik1±s)�(`1�ik4±t)�(`2� ik1±t)�(`2+ik4±s)

�(2`1)�(2`2)
(1.3) {exactoto}

✓

iô

E
�iô

du

2⇡i
�(u)�(u�2iks)�(u+ik1+4�s+t)�(u�iks+t�1�4)�(`1+iks�1�u)�(`2+iks�4�u)

�(u+`1�iks�1)�(u+`2�iks�4)
where ki+j is shorthand for ki + kj and �(x ± y) = �(x + y)�(x � y), etc. The time dependent

phase factor represents the usual Schrodinger evolution of the intermediate energy eigen states.

The above expression for the four point function is an exact result for the Schwarzian theory, and

a leading order IR approximation for the SYK-model.

The goal of this paper is to exhibit the bulk interpretation of the correlation functions of the

Schwarzian theory in terms of gravitation scattering. We will focus on the limit C � ô, or

equivalently, the high temperature regime. In the bulk, this corresponds to the kinematic regime

in which gravitational scattering process takes place close to the black hole horizon.

As one of our main results, we will establish a precise match between the large C limit of the

exact result (1.3) and the semi-classical AdS2 calculation. Before moving on to the details we

quickly review the semi-classical approach. Time ordered two and four point functions reduce in

the semi-classical regime to overlaps, or more generally, integrals of products of asymptotic AdS

wave functions [12]. For the OTO four point function, on the other hand, one also needs to include

the 1+1-D analog of the Dray-’t Hooft S-matrix for the gravitational shockwave [33]. As we review

in section 3, this semi-classical calculation yields an integral expression of the form

ÖV1W3V2W4ã =
ô

E
0

dq+

ô

E
0

dp�  
ò
1 (q+)�ò

3 (p�) S(p�, q+)  2(q+)�4(p�). (1.4) {shockoverlap}

where S(p�, q+) describes the geometric shockwave interaction between the two particles

S(p�, q+) = exp ⇤ i�

4⇡C
p�q+ . (1.5) {hooftdray}

In section 3, we show that our exact expressions for the OTO four point functions at large C

precisely reduces to this semi-classical result, thus confirming our claim that the formulas (1.2)

and (1.3) contain the geometric shockwave S-matrix as a identifiable subfactor.
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function becomes

hV1W3V2W4i =

Z
0

�1

dq+

�q+

Z
0

�1

dp�

�p�
 †

`1
(q+, U1) `1(q+, U2)�

†
`2
(p�, V3)�`2(p�, V4)S(p�, q+).

(3.7) {eq:OTOCsw}

Even though this comes from a bulk calculation, one can argue that this is expected from
the semiclassical limit purely in terms of the Schwarzian theory [13]. The integrals in the
equation above (3.7) can be computed explicitly and give 10

hV1W3V2W4i

hV1V2ihW3W4i
= z

�2`1U(2`1, 1 + 2`1 � 2`2, 1/z), (3.8) {eq:MSYsw}

where following [13] we define the cross-ratio

z =
i�

16⇡C

e
⇡(⌧3+⌧4�⌧1�⌧2)/�

sinh ⇡⌧12
� sinh ⇡⌧34

�

. (3.9)

If we make the choice of times similar to [13], explicitly ⌧1 = �i
�
2
, ⌧2 = 0, ⌧3 = ⌧ � i

�
4
and

⌧4 = ⌧ + i
�
4
, then the cross-ratio becomes z = �

16⇡C e
2⇡
� ⌧ . The shockwave calculation is valid

for ⌧ > 0 large with this combination �
C e

2⇡
� ⌧ fixed. In the remainder of this section we will

show that the exact four-point function found in [30] reproduces this answer, in a form that
is valid for arbitrary choices of times.

Before doing that it will be useful to translate the calculation from Kruskal variables to
Schwarzschild variables. We already derived how the wavefunction transforms under this
change of coordinates so it will be enough to present the S-matrix. The four-point function
is

hV1W3V2W4i =
4Y

i=1

Z 1

�1

d!i

2⇡
e
i!1⌧1�i!2⌧2+i!3⌧3�i!4⌧4+

�
4 (!1+!2+!3+!4)�(!1 + !3 � !2 � !4)

2⇡

✓
2⇡

�

◆2`1+2`2�3 �(`1 � i⌫1)� (`1 + i⌫2)� (`2 + i⌫3)� (`2 � i⌫4)� (i⌫1 � i⌫2)

�(2`1)�(2`2)(
4⇡iC
� )i(�⌫1+⌫2)

,

with dimensionless energy ⌫i =
�
2⇡!i. From this expression, and the Schwarzschild wave-

functions (2.13), we can read o↵ the S-matrix

S(!1,!3;!2,!4) =
�

(2⇡)2
�(!1 + !3 � !2 � !4)

� (i⌫1 � i⌫2)

(4⇡iC� )i(�⌫1+⌫2)
, (3.10) {Smatr}

representing the scattering of 1 + 3 ! 2 + 4 with an energy conserving �-function. This
scattering matrix is unitary, which is readily seen as follows. In (3.7) we wrote the scattering

10
Even though it is not obvious from this expression one can verify using the properties of the hypergeo-

metric function U(a, b, z) that the right hand side is invariant under `1 $ `2.
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1 Introduction
{sec:Sch}

In the past several years, it became clear that chaotic behavior in holographic quantum
mechanical theories manifests itself via gravitational shockwave interactions in the bulk.
An interesting class of theories, complicated enough to display maximally chaotic behavior
while remaining exactly solvable, are the Sachdev-Ye-Kitaev (SYK) models [1, 2, 3, 4,
5]. Their proposed gravitational dual consists of a suitable 2D dilaton gravity theory in
AdS2 [2, 6, 7, 8, 9, 11, 12, 13, 14]. As first emphasized by Kitaev, the SYK model has a
dynamical regime where it is dominated by a single degree of freedom f(⌧) representing
reparametrizations of a 1D circle, with an unusual action that consist of the Schwarzian
derivative. The Schwarzian theory is the 1D quantum mechanics described by

S[f ] = �C

Z �

0

d⌧
�
F, ⌧

 
, F ⌘ tan

✓
⇡f

�

◆
, (1.1) {schwaction}

where
�
f, ⌧

 
= f 000

f 0 �
3

2

�
f 00

f 0

�2
with f(⌧ + �) = f(⌧) + � an element of the group Di↵(S1)

of di↵eomorphisms of the thermal circle, and C is a dimensionful coupling constant. The
semi-classical regime consists of taking C large compared to all other time scales. Besides of
being an e↵ective theory describing the IR dynamics of the SYK-model, this action is also
found to describe 2d Jackiw-Teitelboim dilaton gravity [11, 12, 13, 14, 15], and as such is
expected to contain the universal gravitational dynamics of any such SYK-like (or tensor)
model, in a very similar way as 2d Liouville theory describes the universal gravitational
regime of any holographic 2d CFT [23, 24].

In [30], three of the authors were able to solve the Schwarzian theory by exploiting its
relationship with 1+1D Liouville CFT and obtained exact expressions for N point correlation
functions. The most interesting are the four-point functions. They come in two types: time
ordered and the out-of-time ordered. These four-point functions can be expressed in the
form of a momentum space integral

hV1V2W3W4i =
1

Z(�)

Y

i=1,4,s,t

Z
dk

2

i sinh 2⇡ki ATO(ki, ⌧i) (1.2) {intro:OTOC}

hV1W3V2W4i =
1

Z(�)

Y

i=1,4,s,t

Z
dk

2

i sinh 2⇡ki AOTO(ki, ⌧i) (1.3)

Here ki labels the energy of the intermediate states via Ei = k
2

i /2C. The respective mo-
mentum space amplitudes can be diagrammatically represented as

ATO = kskt

`1

`2

k1

k4

⌧3

⌧2

⌧4

⌧1

AOTO = kskt
`2 `1

k1

k4

⌧2

⌧3

⌧4

⌧1

2

Large	C	
high	temperature

u

Figure 6: Contour followed in the integral. Deforming to the right gives two 4F3 or the
Wilson function. Deforming to the left is more suitable to deduce that as M ! 1 only 2
poles dominate (colored in red). {poles}

�(a1 � 1) = �(a1)
a1�1

and again more �’s in the numerator than in the denominator. E.g. at
u = �1 the residue becomes:

�(a1)�(a2 � 1)�(a3)

(a1 � 1)(a3 � 1)�(b1 � 1)�(b2 � 1)
�(A+ 1)�(B + 1) ! 0 (B.4)

which due to the additional 1/(a1a3) goes to zero much faster than the residue at s = 0.
Two residues remain, at u = 0 and at u = �a2, each with half weight. These are suppressed
by only 2 �’s, making them the dominant contribution. This proves the simplifying ansatz
we made in [30] to evaluate the u-integral in the semiclassical regime.

The residues of both poles turn out to be related as

Resu=0 = Resu=�a2 |s$�t,1$�4
. (B.5)

Focusing on the second pole, the relevant Gamma-functions in the amplitude are written as

�(`1+ ik1� iks)�(`1+ ik4� ikt)�(`2+ ik1� ikt)�(`2+ ik4� iks)�(iks+ ikt� ik1� ik4). (B.6)

So all �’s just have a sign-flip in their dependence on all k’s compared to the u = 0 pole.
So upon defining the !’s with opposite sign as

k
2

1
� k

2

s = !1, k
2

4
� k

2

s = !4, k
2

1
� k

2

t = !3, k
2

4
� k

2

t = !2, k
2

s = M, (B.7)

one obtains in the end, comparing to the other pole, the time-reversed amplitude where
every ti ! �ti.
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3 Four-Point function
{sect4}

In this section we will focus on the Schwarzian four-point function in the semiclassical limit. Our

main focus is the out-of-time ordered case and we will match it with an AdS2 shockwave calculation.

We will consider ingoing and outgoing matter particles created by local operators V (⌧1) and W (⌧2)
with time di↵erence ⌧1 � ⌧2 9 �.

ÖV1W3V2W4ã =
4

5
i=1

E d!i

2⇡
 

ò
1 (!1) ò

3 (!3) S(!1,!2,!3,!4)  2(!2) 4(!4). (3.1)

3.1 Time-ordered four-point function

For comparison, we first consider the semiclassical limit of the exact time-ordered four-point func-

tion [29]. The correlator is expected to factorize into two two-point functions in the semiclassical

limit:

G`1`2(⌧1, ⌧2, ⌧3, ⌧4) � �⇣� 1
�
⇡
sinh(⇡

�
(⌧21 ± i✏))

�⌘✏
2`1 �⇣� 1

�
⇡
sinh(⇡

�
(⌧43 ± i✏))

�⌘✏
2`2

. (3.2)

The ±-signs can be taken independently, allowing one to swap the order of the operators within

the same bilocal operator. And indeed, starting with the exact correlator:

ÖV1W3V2W4ã = 1

Z(�) E dk
2

1dk
2

4dk
2

s sinh(2⇡k1) sinh(2⇡k4) sinh(2⇡k4) (3.3)

✓ e
� 1

2C
⇥ik21⌧21+ik24⌧43+ik2s(��⌧21+⌧43)� �(`2 ± ik4 ± iks)�(`1 ± ik1 ± iks)

�(2`1)�(2`2) , (3.4)

and following a similar procedure as we did for the two-point function,7 the four-point function

becomes

G`1`2(⌧21, ⌧43) ⇥ (2⇡)4
8

E dMe
2⇡

”
M� �

2C
M E d!1

2⇡
e
�i ⌧21

2C
!1+⇡

!1
2
”
M

� ⇤`1 ± i
!1

2
”
M
 

�(2`1) (2”M)2`1�1

✓E d!2

2⇡
e
�i ⌧43

2C
!2+⇡

!2
2
”
M

� ⇤`2 ± i
!2

2
”
M
 

�(2`2) (2”M)2`2�1 .
(3.6) {to4pt}

The integral over M is dominated by the same saddle point at M0 = 4⇡2
C

2/�2 as the one in the

two-point functions and the four-point function factorizes. The four-point time-ordered correlation

functions can then be interpreted as two consecutive processes of a black hole absorbing and

emitting particles.

7 Using the change of variables

k
2
1 = M + !1, k

2
4 = M + !2, k

2
s = M !1,!2 8 M (3.5)
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Semiclassical limit	of	OTO	4pt	function



Microscopic understanding of Lyapunov and fast thermalizing behavior? 
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Figure 4: The scrambling of a signal (operator A) due to the a perturbation (operator B) at
some earlier time t1 < t0. An observer that measures the state can detect signal A only if A
acts on the state from the left. Passing A through B produces a new intermediate channel
with energy �, which for t0� t1 > tcrit exceeds !. Signal A becomes scrambled: its coherent
phase information get washed out by the large entropy region of the spectrum near M + �.

time and with some approximate frequency ↵

Â↵e
�i↵t0 ⌘

X

⌫⇠↵

Â⌫ e
�i⌫t0 , B̂!�↵e

�i(!�↵)t1 ⌘
X

⌫⇠!�↵

B̂⌫ e
�i⌫t1 . (25)

We imagine that wave packet A carries some information encoded in the relative phases in
this sum. Observer C has access to the state

e
�i!t1�i↵(t0�t1) B̂!�↵Â↵

��M
↵
. (26)

Let us suppose that C knows how to decode Â, but has no knowledge of what B̂ looks like.
In other words, since C can only detect Â, she can act with Â on the left of the state and
decode whatever phase coherent signal she can extract from it. But since Â is located on
the right of B̂, the signal is hidden behind the noise. No problem, so far: all C has to do is
to interchange the order of B̂ and Â, so that Â acts from the left. So the exchange algebra
becomes an intrinsic part of the story.

The interchange proceeds via the R-operation B̂!�↵Â↵ = R↵�Â!��B̂�. Here R↵� is a
microscopic property of the CFT that, according to our proposal, is well approximated by
the quantum 6j-symbol (19). After applying R to the wave packets, we can use geometric
optics to localize the sums over frequencies and deduce that observer C sees the state

e
i
~S↵��i!t̃0�i�(t̃1�t̃0)Â!��B̂�

��M
↵

(27)

with S↵� = ~ log(R↵�) and � determined by the stationary phase condition. Given our
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