A 2D Perspective on the SYK model

Herman Verlinde
Princeton University
KITP -- Chaos and Order program
October 31- 2018

Based on: arXiv:1705.08408, T. Mertens, J. Turiaci, HV + work in progress

Holographic Dictionary

Discrete
Spectrum
Gravity dominated regime, effective geometric description

Continuum
Spectrum
2D Quantum
Dilaton Gravity

Effective IR dynamics
dominated by Goldstone mode

Schwarzian
Quantum
Mechanics

Low dimensional holography

SYK model $\quad \leftrightarrow \quad$ 2D dilaton gravity

$$
S_{2 D}=\int d^{2} x \sqrt{-g} \Phi(R+\Lambda)+S_{\mathrm{matter}}
$$

Almheiri, Polchinski; Jensen; Maldacena, Stanford, Yang; Engelsoy, Mertens, HV; Kitaev

equivalent to:
charged particle on hyperbolic plane w/ constant B-field

SYK model = 1D many body QM with maximal chaos

$$
H=\sum_{i j k \ell} J_{i j k \ell} \psi^{i} \psi^{j} \psi^{k} \psi^{\ell} \quad\left\{\psi^{i}, \psi^{j}\right\}=\delta^{i j}
$$

$$
G\left(\tau_{1}, \tau_{2}\right) \equiv \frac{1}{N} \sum_{i}\left\langle\psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right)\right\rangle
$$

Large N limit of SD equations = soluble Dominated by `pumpkinic' diagrams

Dynamical Mean Field Theory

$$
-S_{E} / N=\frac{1}{2} \operatorname{Tr} \log \left(\partial_{\tau}-\Sigma\right)-\frac{1}{2} \int d \tau_{1} d \tau_{2}\left[\Sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)-\frac{\mathcal{J}^{2}}{q^{2}} G\left(\tau_{1}, \tau_{2}\right)^{q}\right]
$$

at large q reduces to

$$
G\left(\tau_{1}, \tau_{2}\right) \equiv \frac{1}{N} \sum_{i}\left\langle\psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right)\right\rangle=\frac{\operatorname{sgn}\left(\tau_{12}\right)}{2}\left(1+\frac{1}{q} g\left(\tau_{1}, \tau_{2}\right)\right)
$$

Liouville CFT on kinematic space!

$$
S_{\mathrm{eff}}=\frac{N}{8 q^{2}} \int d \tau_{1} d \tau_{2}\left[\partial_{\tau_{1}} g \partial_{\tau_{2}} g-4 \mathcal{J}^{2} \exp g\left(\tau_{1}, \tau_{2}\right)\right] . \quad c=\frac{12 \pi N}{q^{2}}
$$

IR limit of SD equations

$$
\int d \tau^{\prime} G\left(\tau, \tau^{\prime}\right) \Sigma\left(\tau^{\prime}, \tau^{\prime \prime}\right)=-\delta\left(\tau-\tau^{\prime \prime}\right), \quad \Sigma\left(\tau, \tau^{\prime}\right)=J^{2}\left[G\left(\tau, \tau^{\prime}\right)\right]^{q-1}
$$

are invariant under 1D diffeomorphisms

$$
G\left(\tau, \tau^{\prime}\right) \rightarrow\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta} G\left(f(\tau), f\left(\tau^{\prime}\right)\right), \quad \Sigma\left(\tau, \tau^{\prime}\right) \rightarrow\left[f^{\prime}(\tau) f^{\prime}\left(\tau^{\prime}\right)\right]^{\Delta(q-1)} \Sigma\left(f(\tau), f\left(\tau^{\prime}\right)\right)
$$

\rightarrow IR effective theory is dominated by a dynamical Goldstone mode $=1 \mathrm{D}$ reparametrizations $\mathrm{f}(\tau)$

$$
\begin{array}{rlrl}
S[f] & =-C \int_{0}^{\beta} d \tau\left(\{f, \tau\}+\frac{2 \pi^{2}}{\beta^{2}} f^{\prime 2}\right) & \{f, \tau\}=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2} \\
& =-C \int_{0}^{\beta} d \tau\{F, \tau\}, & F \equiv \tan \left(\frac{\pi f(\tau)}{\beta}\right) & F \rightarrow \frac{a F+b}{c F+d}
\end{array}
$$

Schwarzian QM = exactly solvable

should be able to compute anything we want!

Canonical formulation:

$$
L=\pi_{\phi} \dot{\phi}+\pi_{f} \dot{f}-\left(\pi_{\phi}^{2}+\pi_{f} e^{\phi}\right)
$$

$$
\begin{aligned}
{\left[f, \pi_{f}\right] } & =i \\
{\left[\phi, \pi_{\phi}\right] } & =i
\end{aligned}
$$

$\operatorname{SL}(2, \mathrm{R})$ symmetry: $\quad f \rightarrow \frac{a f+b}{c f+d} \rightarrow$ generators $\left[\ell_{a}, \ell_{b}\right]=i \epsilon_{a b c} \ell_{c}$

Hamiltonian = Casimir:

$$
H=\pi_{\phi}^{2}+\pi_{f} e^{\phi}=\ell_{0}^{2}-\frac{1}{2}\left\{\ell_{-1}, \ell_{1}\right\}
$$

$$
j=-\frac{1}{2}+i k \quad E(k)=-j(j+1)=\frac{1}{4}+k^{2}
$$

$$
Z(\beta)=\int_{\mathcal{M}} \mathcal{D} f e^{-S[f]}
$$

Partition function

$$
\mathcal{M}=\operatorname{Diff}\left(S^{1}\right) / S L(2, \mathbb{R})
$$

integral over energy $\mathrm{E}=1 / 4+\mathrm{k}^{2}$ with continuous spectral density

$$
\rho(E)=\sinh (2 \pi \sqrt{E-1 / 4})
$$

Stanford, Witten

$$
Z(\beta)=\int_{0}^{\infty} d \mu(k) e^{-\beta E(k)}, \quad d \mu(k)=d k^{2} \sinh (2 \pi k)
$$

Partition function $=$ integral over a symplectic manifold \leftarrow can be quantized!

$$
Z(\beta)=\int_{\mathcal{M}} \mathcal{D} f e^{-S[f]}
$$

Identity representation

$$
=\lim _{\substack{c \rightarrow \infty \\ q \rightarrow 1}} \operatorname{Tr}\left(q^{L_{0}}\right),
$$

$$
q^{\frac{c}{24}}=e^{-\frac{\pi^{2}}{\beta}}=\text { fixed }
$$

$$
=e^{S_{0}+\beta E_{0}}\left(\frac{\pi}{\beta}\right)^{3 / 2} \exp \left(\frac{\pi^{2}}{\beta}\right)
$$

$$
\begin{aligned}
\mathcal{M} & =\operatorname{Diff}\left(S^{1}\right) / S L(2, \mathbb{R}) \\
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m} \\
L_{n} & =\frac{\beta c}{48 \pi^{2}} \int_{0}^{\beta} d \tau e^{2 \pi i n \tau / \beta}\{F, \tau\} .
\end{aligned}
$$

Identity character

$$
\operatorname{Tr}\left(q^{L_{0}}\right) \equiv \chi_{0}(q)=\frac{q^{\frac{1-c}{24}}(1-q)}{\eta(\tau)}
$$

This is an exact result
c.f. Stanford, Witten Bagrets, Altland, Kamenev

$$
\chi_{0}(q)=\int_{0}^{\infty} d P S_{0}^{P} \chi_{P}(\tilde{q})
$$

$$
\begin{gathered}
S_{0}^{P}=4 \sqrt{2} \sinh (2 \pi b P) \sinh \left(\frac{2 \pi P}{b}\right) . \\
c=1+6 Q^{2}=1+6\left(b+b^{-1}\right)^{2}
\end{gathered}
$$

Light operators

$$
\Delta(P)=\frac{Q^{2}}{4}+P^{2}
$$

- Boundary State:

$$
\left.\left.|Z Z\rangle=\int_{0}^{\infty} d P \Psi_{\mathrm{ZZ}}(P) \| P\right\rangle\right\rangle \quad\left|\Psi_{\mathrm{ZZ}}(P)\right|^{2}=S_{0}^{P}
$$

- Schwarzian Limit:
- $\quad b \rightarrow 0$

$$
\| P\rangle \rightarrow|P\rangle
$$

$$
\text { - } P=k b
$$

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=\frac{1}{Z} \int_{\mathcal{M}} \mathcal{D} f e^{-S[f]} \mathcal{O}_{1} \ldots \mathcal{O}_{n}
$$

Correlation functions

$$
\mathcal{O}_{\ell}\left(\tau_{1}, \tau_{2}\right) \equiv\left(\frac{\sqrt{f^{\prime}\left(\tau_{1}\right) f^{\prime}\left(\tau_{2}\right)}}{\frac{\beta}{\pi} \sin \frac{\pi}{\beta}\left[f\left(\tau_{1}\right)-f\left(\tau_{2}\right)\right]}\right)^{2 \ell}
$$

Two-point function

$$
\left\langle\mathcal{O}_{\ell}\left(\tau_{1}, \tau_{2}\right)\right\rangle=\int \prod_{i=1}^{2} d \mu\left(k_{i}\right) \mathcal{A}_{2}\left(k_{i}, \ell, \tau_{i}\right) .
$$

Liouville theory on hyperbolic cylinder \rightarrow reduces to dilaton gravity for $\mathrm{c} \rightarrow \infty$
$S=\frac{c}{192 \pi} \int d \tau \int_{0}^{\pi} d \sigma\left[(\partial \phi)^{2}+4 \mu e^{2 \phi}\right]$

$$
\partial_{u} \partial_{v} \phi(u, v)=e^{2 \phi(u, v)} .
$$

Insertion of $\mathcal{O}_{\ell}\left(\tau_{1}, \tau_{2}\right)$ in Schwarzian \leftrightarrow Insertion of $V_{\ell}=e^{2 \ell \phi\left(\tau_{1}, \tau_{2}\right)}$ in Liouville CFT

Two point function

$$
\left\langle\mathcal{O}_{\ell}\left(\tau_{1}, \tau_{2}\right)\right\rangle=\int \prod_{i=1}^{2} d \mu\left(k_{i}\right) \mathcal{A}_{2}\left(k_{i}, \ell, \tau_{i}\right) .
$$

$$
\mathcal{A}_{2}\left(k_{i}, \ell, \tau_{i}\right)=e^{-\left(\tau_{2}-\tau_{1}\right) k_{1}^{2}-\left(\beta-\tau_{2}+\tau_{1}\right) k_{2}^{2}} \frac{\Gamma\left(\ell \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 \ell)}
$$

Mertens, Turiaci, HV

Semi-classical interpretation of two-point function

$$
\begin{aligned}
\langle\mathcal{O}(\tau) \mathcal{O}(0)\rangle_{\beta} & =\int \prod_{i=1,2} d k_{i} \rho\left(k_{i}\right) e^{-\frac{k_{1}^{2}}{2 C} \tau-\frac{k_{2}^{2}}{2 C}(\beta-\tau)} \frac{\Gamma\left(\ell \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 \ell)} \\
& =\int \prod_{i=1,2} d k_{i} d \theta_{i} e^{-I\left(k_{i}, \theta_{i}, \tau, \ell\right)}
\end{aligned}
$$

where the 'action' appearing in the exponent is given by

$$
I\left(k_{i}, \theta_{i}, \tau, \ell\right)=\sum_{i=1,2}\left(\frac{k_{i}^{2}}{2 C} \tau_{i}+\theta_{i} k_{i}-\log \rho\left(k_{i}\right)\right)+\ell \log \left(\cos \frac{\theta_{1}}{2}+\cos \frac{\theta_{2}}{2}\right)^{2}+I_{0}(\ell)
$$

The exact non-perturbative answer for the $2 n$-point functions
can be summarized via a simple set of diagrammatic rules:

‘propagator’

$$
\xrightarrow[k_{2}]{k_{1}} \int_{\ell}^{k_{1}}=\gamma_{\ell}\left(k_{1}, k_{2}\right)
$$

`vertex’

$$
\gamma_{\ell}\left(k_{1}, k_{2}\right)=\sqrt{\frac{\Gamma\left(\ell \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 \ell)}} .
$$

Four-point function

$$
\left\langle\mathcal{O}_{\ell_{1}}\left(\tau_{1}, \tau_{2}\right) \mathcal{O}_{\ell_{2}}\left(\tau_{3}, \tau_{4}\right)\right\rangle=
$$

OTO four-point function

$$
\left\langle\mathcal{O}_{\ell_{1}}\left(\tau_{1}, \tau_{2}\right) \mathcal{O}_{\ell_{2}}\left(\tau_{3}, \tau_{4}\right)\right\rangle_{\text {ото }}=
$$

R-matrix

The R-matrix of the Schwarzian is found to be equal to a classical 6 j -symbol of $\mathrm{SU}(1,1)$

$$
\begin{gathered}
R_{k_{s} k_{t}}\left[\begin{array}{c}
k_{4} \ell_{2} \\
k_{1}
\end{array} \ell_{1}\right]=\left\{\begin{array}{lll}
\ell_{1} & k_{4} & k_{s} \\
\ell_{2} & k_{1} & k_{t}
\end{array}\right\}=\sqrt{\Gamma\left(\ell_{1} \pm i k_{2} \pm i k_{s}\right) \Gamma\left(\ell_{3} \pm i k_{2} \pm i k_{t}\right) \Gamma\left(\ell_{1} \pm i k_{4} \pm i k_{t}\right) \Gamma\left(\ell_{3} \pm i k_{4} \pm i k_{s}\right)} \\
\times \mathbb{W}\left(k_{s}, k_{t} ; \ell_{1}+i k_{4}, \ell_{1}-i k_{4}, \ell_{3}-i k_{2}, \ell_{3}+i k_{2}\right),
\end{gathered}
$$

WV = wilson function
linear combination of ${ }_{4} \mathrm{~F}_{3}$
Matches with the gravitational shockwave amplitude

$$
G_{\ell_{1} \ell_{2}}^{\mathrm{OTO}}=\int d P d Q \Psi_{\mathrm{ZZ}}^{\dagger}(P) \Psi_{\mathrm{ZZ}}(Q) \times \int d P_{s} \underbrace{\overbrace{P_{s}}^{\ell_{1}} \underbrace{}_{P}}_{P_{\ell_{2}}}{ }_{P_{s}}^{Q_{P}}
$$

$$
=\int d P d Q \Psi_{\mathrm{ZZ}}^{\dagger}(P) \Psi_{\mathrm{ZZ}}(Q) \times \int d P_{s} d P_{t} \quad R_{P_{s} P_{t}}\left|\begin{array}{llll}
Q & \ell_{1} & Q^{2} \\
\cline { 1 - 4 } & P_{s} & & P_{t} \\
\cline { 1 - 3 } & \ell_{2} & \\
\hline
\end{array}\right|
$$

Herman VERLINDE*
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Received 26 September 1989
We study the geometric quantization of Teichmuller space and show that the physical state conditions take the form of conformal Ward identities that define the space of Virasoro conformal blocks in 2-d CFT. Possible applications of these results to the [conformal bootstrap] are indicated.

Hilbert state of the $(2+1)$-dimensional gravity theory

$$
\begin{equation*}
\Psi \in \mathscr{H}^{+} \otimes \mathscr{H}^{-} \tag{6.13}
\end{equation*}
$$

can be decomposed into a sum of left and right conformal blocks as

$$
\begin{equation*}
\Psi=\sum_{I, J} N^{I J} \Psi_{I}^{+} \otimes \Psi_{\bar{J}}^{-}, \tag{6.14}
\end{equation*}
$$

$\left\langle\mathcal{O}_{1}(0) \mathcal{O}_{2}(1) \mathcal{O}_{3}(z, \bar{z}) \mathcal{O}_{4}(\infty)\right\rangle=\left.\left.\sum_{\mathrm{a}}\right|_{1} ^{2} \underbrace{3}_{4}\right|^{2}$
Conformal blocks

$$
\begin{aligned}
& =\sum_{b} F_{a b}\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right] \\
& \mathrm{F}=\text { Fusion matrix } \quad \mathrm{R}=\text { Braid matrix } \\
& 1 \xlongequal[a]{\left\|\left\|_{a}^{2}\right\|^{3}\right.} 4=\sum_{b} R_{a b}^{\varepsilon}\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right] 1 \xlongequal[b]{\|^{3}} 4
\end{aligned}
$$

2D Virasoro CFT = 2D Quantum Hyperbolic Geometry

$$
T(z)=\sum_{i=1}^{n-1}\left(\frac{\Delta_{i}}{\left(z-z_{i}\right)^{2}}+\frac{c_{i}}{z-z_{i}}\right)
$$

Stress-energy tensor

Elliptic

Hyperbolic

2+1-D AdS Gravity = 2D Quantum Hyperbolic Geometry

$$
\hat{l}_{\alpha}|\alpha\rangle=l_{\alpha}|\alpha\rangle .
$$

$\hat{l}_{\beta}|\beta\rangle=l_{\beta}|\beta\rangle$.

$$
\mathcal{R}_{\alpha \beta}=\exp \left(\frac{i}{\hbar} S_{\alpha \beta}\left(l_{\alpha}, l_{\beta}\right)\right)=\langle\beta \mid \alpha\rangle
$$

$$
S_{\alpha \beta}=\operatorname{Vol}\left(T\left[\begin{array}{lll}
1 & 2 & \alpha \\
3 & 4 & \beta
\end{array}\right]\right)
$$

Volume of a hyperbolic tetrahedron

Ponsot-Teschner

$6 j$-symbol of $\operatorname{SL}(2)_{q}$

$$
\phi_{\omega-\alpha}\left(t_{1}\right) \phi_{\alpha}\left(t_{0}\right)=e^{\frac{i}{\hbar} S_{\alpha \beta}} \phi_{\omega-\beta}\left(\tilde{t}_{0}\right) \phi_{\beta}\left(\tilde{t}_{1}\right)
$$

Exchange relation for localized wave-packets

\rightarrow contains the gravitational scattering amplitude
\rightarrow spectral decomposition of OTO four-point function \rightarrow scattering phase determined via geometric optics

c.f. Stanford Shenker

Semiclassical limit of OTO 4pt function

$C \sim G_{N}^{-1} \rightarrow \infty$
[Shenker, Stanford]

$$
\left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle=\int_{0}^{\infty} d q_{+} \int_{0}^{\infty} d p_{-} \Psi_{1}^{*}\left(q_{+}\right) \Phi_{3}^{*}\left(p_{-}\right) \mathcal{S}\left(p_{-}, q_{+}\right) \Psi_{2}\left(q_{+}\right) \Phi_{4}\left(p_{-}\right)
$$

$$
\mathcal{S}=\exp \left(\frac{i \beta}{4 \pi C} p_{-} q_{+}\right)
$$

Dray-'t Hooft S-matrix

Semiclassical limit of OTO 4pt function

Large C

 high temperature$\left\langle V_{1} W_{3} V_{2} W_{4}\right\rangle=\prod_{i=1}^{4} \int \frac{d \omega_{i}}{2 \pi} \Psi_{1}^{*}\left(\omega_{1}\right) \Psi_{3}^{*}\left(\omega_{3}\right) \mathcal{S}\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \Psi_{2}\left(\omega_{2}\right) \Psi_{4}\left(\omega_{4}\right)$.

Schwarchild S-matrix

$$
\mathcal{S}\left(\omega_{1}, \omega_{3} ; \omega_{2}, \omega_{4}\right)=\frac{\beta}{(2 \pi)^{2}} \delta\left(\omega_{1}+\omega_{3}-\omega_{2}-\omega_{4}\right) \frac{\Gamma\left(i \nu_{1}-i \nu_{2}\right)}{\left(\frac{4 \pi i C}{\beta}\right)^{i\left(-\nu_{1}+\nu_{2}\right)}}
$$

$$
\oint_{s=\operatorname{esp}\left(\frac{18}{\pi R_{0} p} p-q\right)}^{\dagger}
$$

Microscopic understanding of Lyapunov and fast thermalizing behavior?

$A_{\omega-\beta} B_{\beta}|M\rangle$

Figure 4: The scrambling of a signal (operator A) due to the a perturbation (operator B) at some earlier time $t_{1}<t_{0}$. An observer that measures the state can detect signal A only if A acts on the state from the left. Passing A through B produces a new intermediate channel with energy β, which for $t_{0}-t_{1}>t_{\text {crit }}$ exceeds ω. Signal A becomes scrambled: its coherent phase information get washed out by the large entropy region of the spectrum near $M+\beta$.

