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M2LInES: Multiscale Machine Learning In 
Coupled Earth System Modeling

Goal: Improve the skill in modelled surface ocean, ice, atmospheric fields on 
timescales of hours to centuries in global climate models
• Development of new data-driven, physics-aware parameterizations of subgrid

ocean, ice & atmosphere processes
• Reduction of structural model biases (numerics, missing physics & poor subgrid
• parameterizations) in existing climate models at NCAR, GFDL & IPSL
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M2LInES: The climate models

• 11 institutions, US + Europe, climate 
modeling centers

• These are AR6 climate models, with 
well established component models

• Learning from data-assimilation (DA-
ML)

• Learning from High-resolution 
simulations (HR-ML)

• Implementation across component 
models 

• The diversity of components models, 
resolutions, and climates, requires ML 
parameterizations to be:

• Transferable
• Scale-aware
• Generalizable
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Challenge: to use ML in Climate Models
Machine learned models

• 50+ lines of python/Julia
• Leveraging widely adopted 

packages under the hood
• Utilizing GPUs
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Climate models

• 1,000,000+ lines of Fortran/c
• Decades of experience
• Almost exclusively use CPUs

There is an apparent (computer) language barrier



Using a trained ML model from climate code

Options to tackle inter-language barrier:
• Code final ML model in Fortran

• e.g. Fortran-Keras bridge (Ott, Pritchard, et al., 2020)

• Build/use a Fortran-python interface using C-API
• e.g. python-embedding (Python manual), call_py_fort

(Noah Brenowitz)

• Use turn-key package (CPU-GPU)
• HPE’s SmartSim (Partee et al., 2021, subm.)
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There are solutions – but there are more subtle challenges with code



Other challenges with climate codes

• Climate model data structures unique to each 
model/component/process

• Definitions, approximations, and units of variables vary between 
models, e.g.

• Ocean: practical salinity vs absolute salinity
• Atmosphere: CLUBB uses (anelastic) liquid water potential, rather than 

enthalpy, CAM expects enthalpy+KE conservation
• Vertical coordinates differ i) between models, ii) between analysis and 

models, iii) between columns, iv) between dynamics and physics s/r
• Parallelism: decomposed data might not support wide stencils 

(for CNN)
• Data availability: parameterizations might only have access to 

single column data but ML model need multiple columns
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Interactions between processes
• Information interaction

• Use of intermediate/secondary 
variables, e.g. sub-grid 
parameters (cloud fraction, 
mixing length scale, …)

• Physical interaction
e.g. mesoscale+sub-mesoscale
eddy re-stratification balancing 
mechanical/buoyant mixing of 
ocean boundary layer

• Compensating errors
• ML models will improve 

representation of model physics 
… but can make model look 
worse due to prior tuning
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Online stability
• Offline training not always stable 

when used in a forward model
• Depends on effective 

eigenvalues
• Lyapunov exponents

• Calculating/modelling increments 
vs tendencies vs fluxes makes a 
difference

• Conservation properties, and 
generalization, should be 
beneficial

• Recent successes, e.g. Yuval et al. 
2021

• Can ML model tendencies, 𝑁𝑁𝑛𝑛, 
simply be added to model 
tendencies 𝑀𝑀𝑛𝑛 ?

• GCMs each use different 
algorithms

• e.g. (with 𝑎𝑎 = 3
2

+ 𝜖𝜖)
𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + Δ𝑡𝑡 𝑎𝑎𝑀𝑀𝑛𝑛 − 1 − 𝑎𝑎 𝑀𝑀𝑛𝑛−1

• Damping modes
• e.g. Euler forward

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + Δ𝑡𝑡 𝑀𝑀𝑛𝑛 + 𝑁𝑁 𝑢𝑢𝑛𝑛

• Oscillatory modes
• Multi-level, multi-stage, e.g.

𝑢𝑢∗ = 𝑢𝑢𝑛𝑛 +
1
2
Δ𝑡𝑡 𝑀𝑀𝑛𝑛 + 𝑁𝑁 𝑢𝑢𝑛𝑛

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + Δ𝑡𝑡 𝑀𝑀𝑛𝑛 + 𝑁𝑁 𝑢𝑢∗

• Fast modes
• Implicit, e.g.

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + Δ𝑡𝑡 𝑀𝑀𝑛𝑛 + 𝑁𝑁 𝑢𝑢𝑛𝑛+1

• Implications for training?

KITP November 2021 Implementing ML parameterizations in climate models 10



Stability and efficacy
• Effect of online 

parameterization often needs 
scaling

• Feedback between basic state 
and parameterization missing 
when training offline

• Resolved gradients imperfect
• e.g. ZB20 parameterization 

energizes flow
• FCNN needed the least 

attenuation, but none could be 
used at full effect

• Parameterizations are always 
tuned
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(Fig. S9)

Coarse-resolution model with sub-grid forcing
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑢𝑢 + �𝑢𝑢. �∇ �𝑢𝑢= �𝐹𝐹+ �𝐷𝐷+ �𝑺𝑺



Stencils

• ZB20 FCNN
• 4 layers x 3x3
• No padding

• For contrast, 
GZ21 CNN

• 2 layers x 5x5
• 5 layers x 3x3
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Stencils

• Irregular coasts 
absent from 
training

• ZB20 FCNN
• Disabled 4 points
from boundary

KITP November 2021 13



Stencils

• Discovered equations in ZB20 
(and AZ17) have small stencil 
(for 2nd order FV/FD)

• Expressions are using physical 
quantities likely already 
available in models

• ZB20 9-term does not extend 
stencil
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Stencils

• We know how to implement 
physical boundary conditions 
when calculating the 
quantities

• Caveat: may not be the right 
boundary condition for the 
way the ML parameterization 
“apparently” used the 
quantities

• If in testing we find near-
boundary artifacts, we should 
train with boundaries
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Performance
• Deep Learning is ideal on 

GPUs
• High arithmetic intensity

• ML has been proposed as a 
mean to accelerate models

• Balance between volume of 
inputs and cost of transferring 
inputs to GPU

• Equation discovery
• More efficient (less arithmetic) 

implementation than NN
• Scientific interpretation and 

understanding
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Zanna & Bolton, 2020
(Fig. S12)



Active implementations

• Ocean horizontal momentum closure
• Guillaumin & Zanna, 2021
• Zanna & Bolton, 2021

• Atmospheric convection
• Yuval & O’Gorman, 2020, Yuval et al., 2021,

Yuval & O’Gorman, in prep.

• Ocean surface boundary layer parameter 
profiles

• Ongoing work of Sane et al.
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Momentum closures

• Fine-resolution model evolves 
as

• Sub-grid scale momentum 
transfer diagnosed by 
filtering and coarsening ( )

• So that coarse model 
evolves according to
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Coarse resolution + eqn discovery

Coarse resolution + NN + conservation

Coarse resolution

Fine resolution
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Zanna & Bolton, 2020 
(Fig. S2)



Atmospheric Convection
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Yuval and O’Gorman, Nat. Comm. ‘20 
Yuval, O’Gorman, Hill, GRL, 2021
Gentine et al. GRL 2018
Rasp et al. PNAS 2018
Beucler et al. Phys Rev 2021 

• Train a parameterization by coarse-
graining a high-resolution simulation, 
or learning from SPCAM

1. Accuracy: calculate the subgrid
terms exactly by coarse-graining 
the equations process by process

2. Ensure conservation of energy and 
water:
a) Neural network: predict fluxes and 

sources/sinks (rather than net 
tendencies) or enforce in 
architecture/training

b) Random forest: predictions are 
averages over training samples

• Stable and accurate simulations 
using random forests and neural nets



Ocean surface boundary layer
• ePBL uses an energetically 

constrained approach for 
turbulent fluxes in the surface 
boundary layer

• The energetic constraint provides 
numerical and physical stability 
benefits for climate simulation

• Neural networks to parameterize 
variation in the turbulent mixing 
profile that maintains previously 
established energetic constraints

• Embedding the network in the 
existing approach improves the 
turbulent flux profiles while 
maintaining the stability benefits

• Improves on traditional profiles
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Reichl & Hallberg, 2018  Reichl & Li, 2019



Summary

• M2LInES 
• To date: implementation of ML parameterizations mostly 

evaluated in idealized models … we’re working on getting 
them into GCMs

• Quite a few issues arise, some mundane, other’s tricky
• Stability not guaranteed
• Online model data stencil needed for ML parameterizations can be 

wider than we are used to
• Boundary conditions require more work

• Equation discovery
• Addresses many of the above problems
• And aids in interpretation
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