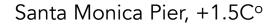


I NYU

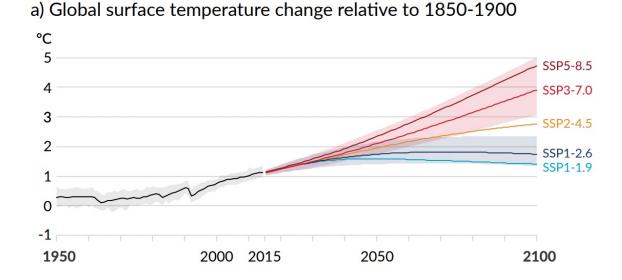
Relating **coastal sea level** to its drivers in the **ocean interior**

Abigail Bodner CAOS, NYU

Santa Monica Pier, present day



Santa Monica Pier, +3C°

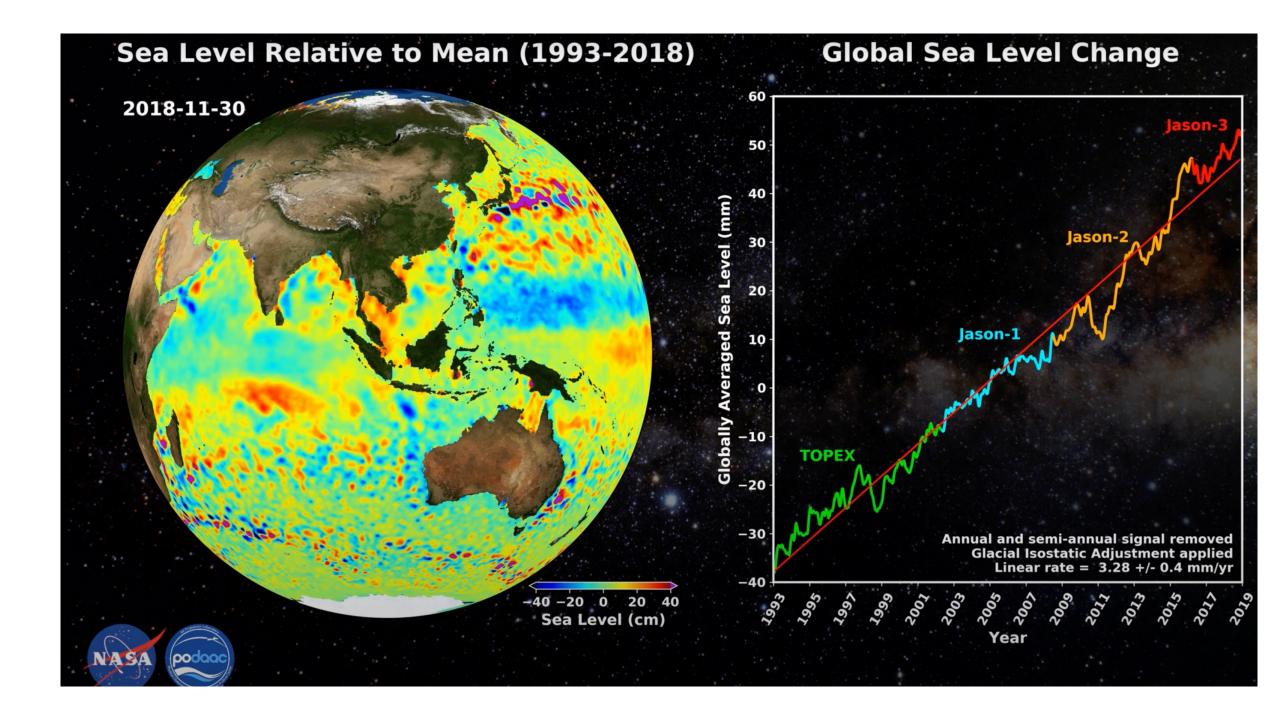


(IPCC, AR6) d) Global mean sea level change relative to 1900 m 2 1.5 Low-likelihood, high-impact storyline, including ice sheet instability processes, under SSP5-8.5 1 SSP5-8.5 SSP3-7.0 SSP2-4.5 SSP1-2.6 SSP1-1.9 0.5 0 1950 2000 2020 2050 2100

Santa Monica Pier, present day

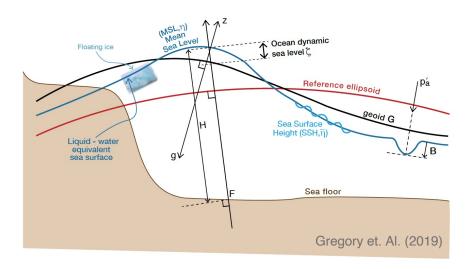
Santa Monica Pier, +1.5C°

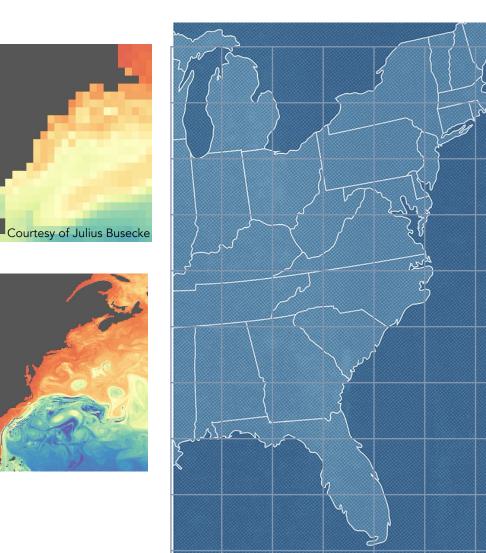
Santa Monica Pier, +3C°



Sea Level

- Global-- driven by thermal expansion and ice melt
- Regional- determined by atmospheric forcing, bathymetry, water density, and turbulent flows
- Wide range of scales.
- Model and resolution dependent !!





Motivation

- There is a relationship to be learned between coastal sea level and its drivers in the ocean interior
- Multiscale problem, too wide a range to simulate on scales relevant for coastal sea level
- If traditional climate simulations cannot resolve, perhaps a machine/deep learning approach is possible?
- What data can we trust and how to meaningfully use it?

Relating coastal sea level to its drivers in the machine Learning ocean interior

Santa Monica Pier, present day

Santa Monica Pier, +1.5C°

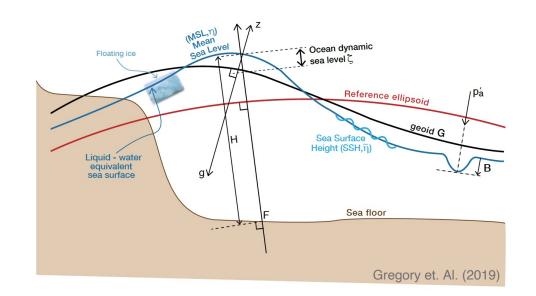
Santa Monica Pier, +3C°

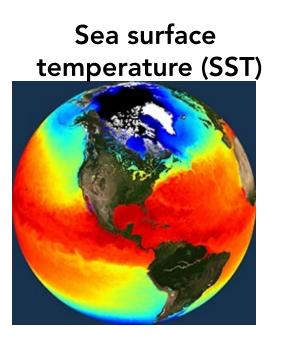
SIMONS FOUNDATION

Ű T NYU

<u>Input:</u> Satellite data

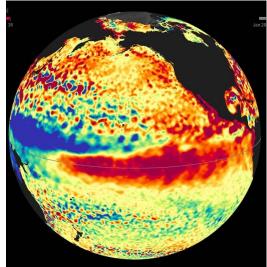
- Surface measurements reflect flow properties in ocean interior
- Related to dynamic sea level components
- Issues: coastal measurements are very poor



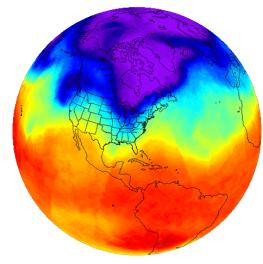


Sea surface salinity (SSS)

Altimetry, sea surface height (SSH)

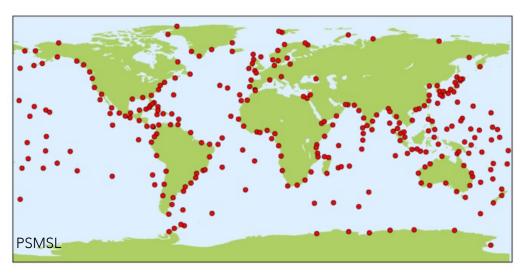


Surface pressure (Pa)

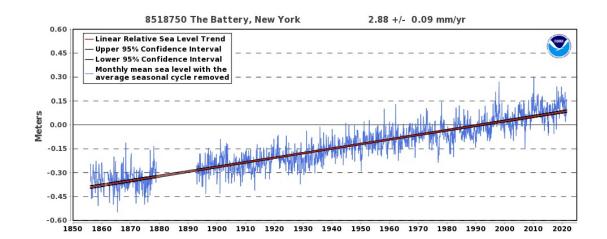


<u>Target</u>: Tide gauge data

- Effective sea level at coastal locations
- Global distribution
- Issues: noisy, gaps in data, not consistent among all locations

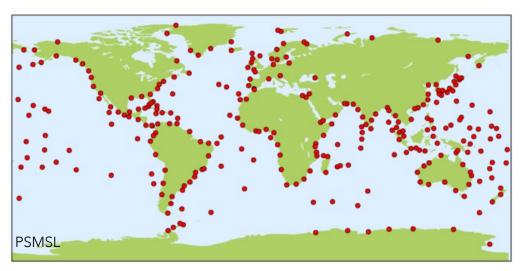


Global tide gauge locations

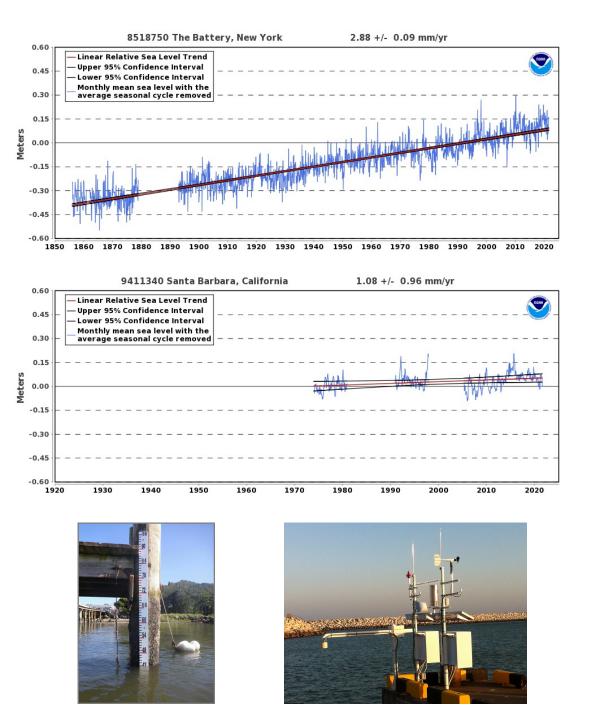


<u>Target</u>: Tide gauge data

- Effective sea level at coastal locations
- Global distribution
- Issues: noisy, gaps in data, not consistent among all locations



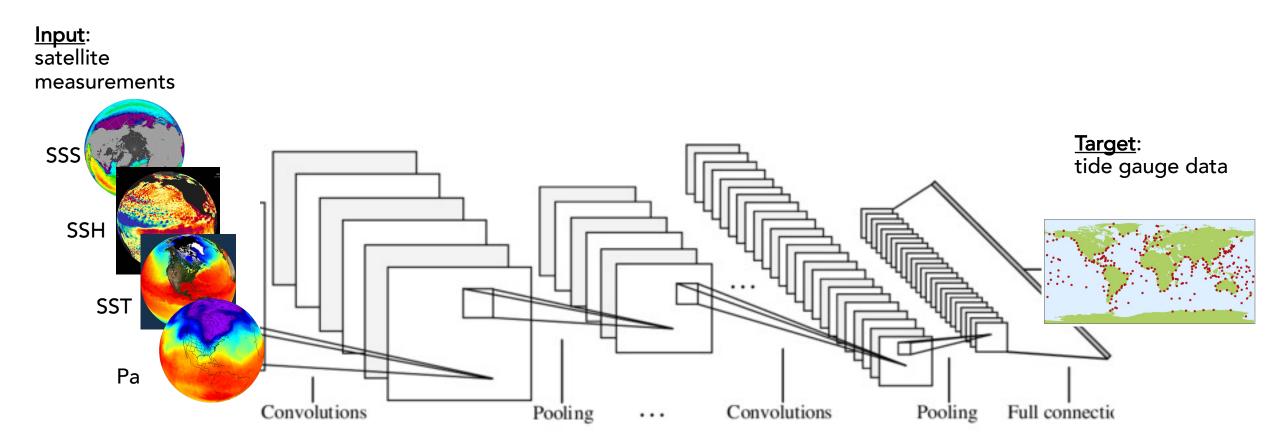
Global tide gauge locations



Objective

- Satellite surface measurements reflect interior properties important for sea level
- Tide gauge data reflects effective sea level at coastal locations
- Use machine learning to link between satellite measurements (input) and tide gauge data (target)

Objective: Machine learning to link between satellite measurements (input) and tide gauge data (target)



Inspiration: **Deep learning for multi-year ENSO forecasts** Yoo-Geun Ham, Jeong-Hwan Kim & Jing-Jia Luo

Input layer SST $(\tau - 2)$ Convolutional filter SST $(\tau - 1)$ FC layer Convolutional MP layer 1 Convolutional MP layer 2 Convolutional layer 1 layer 2 layer 3 SST $(\tau - 0)$ Output layer \square^N Nino3.4 (τ + t) M12 (t = 1-23 months)36

- 3 month SST and heat content (input)
- 24 month prediction of Nino3.4 (target)
- Train on CMIP data

HC $(\tau - 2)$

HC $(\tau - 1)$

HC $(\tau - 0)$

0.0

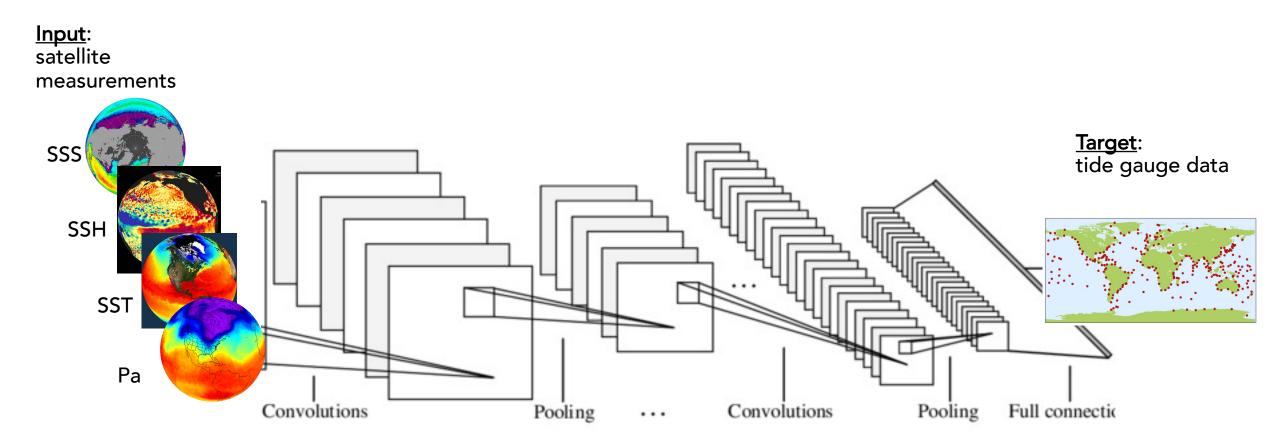
SST or HT anomaly (°C)

1.5

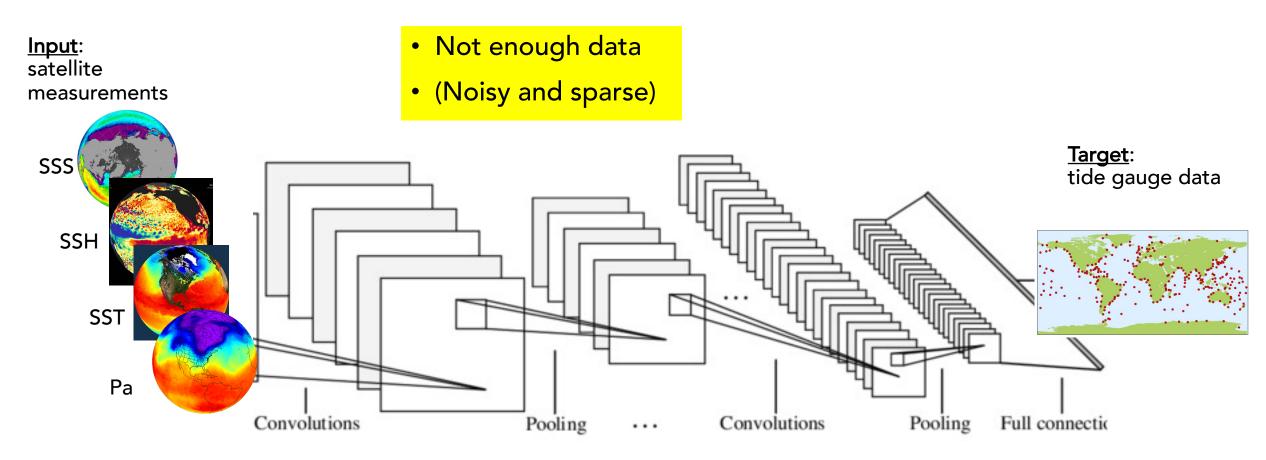
-1.5

• Transfer learning: re-tune network with reanalysis data

Objective: Machine learning to link between satellite measurements (input) and tide gauge data (target)



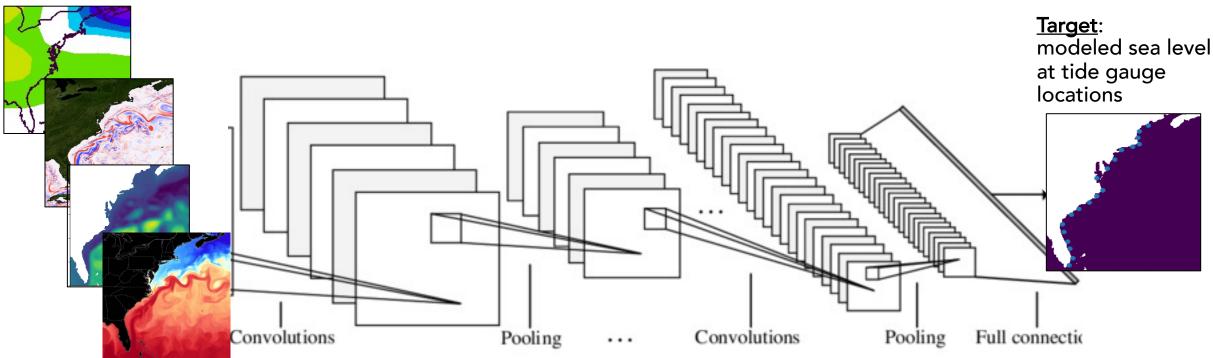
Objective: Machine learning to link between satellite measurements (input) and tide gauge data (target)



Transfer Learning

Pre-train network on model data for physical relationships

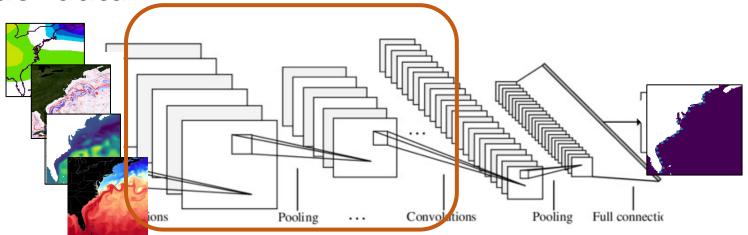
Input: modeled surface data



Transfer Learning

Pre-train network on model data

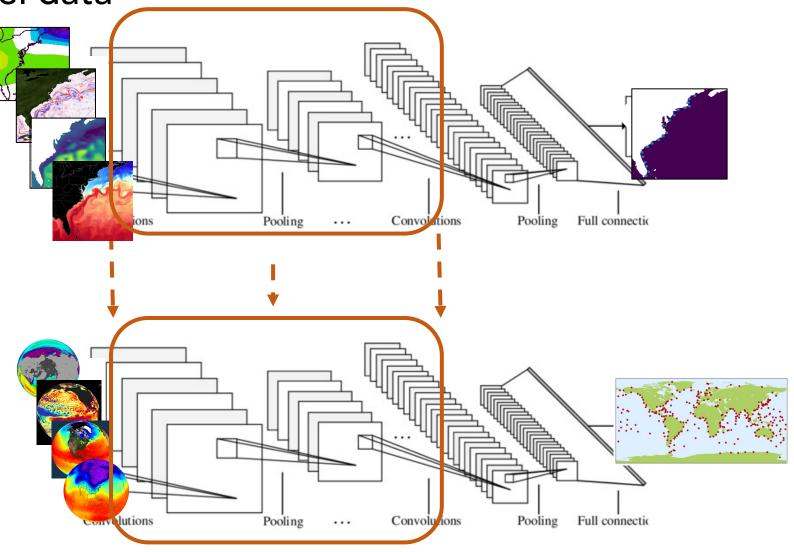
 Train network on model data: picontrol simulation for general physical relationships



Transfer Learning

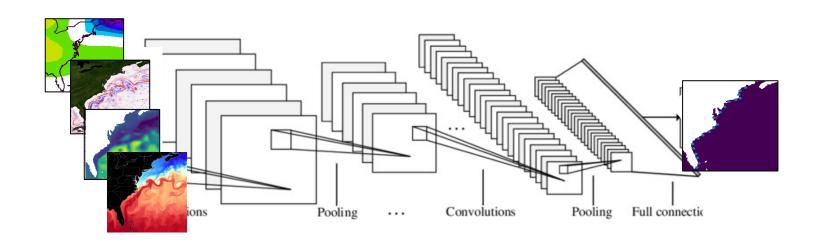
Pre-train network on model data

- Train network on model data: picontrol simulation for general physical relationships
- Transfer pre-trained network and re-tune deep layers with observations



Very preliminary work...

- MOM6 CM2.6 in North Atlantic
- Input: surface velocities and temperature (masked coast)
- Target: hand selected locations of coastal sea level
- Generic convolutional neural network
- Each input-target is a single time step

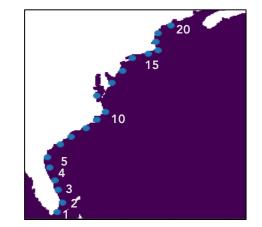


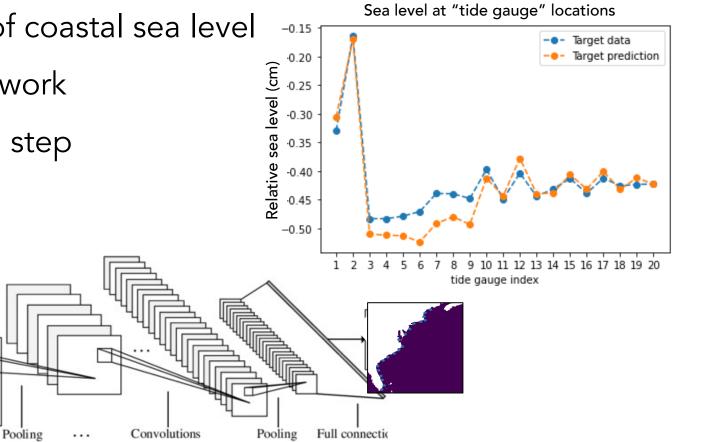
Very preliminary work...

- MOM6 CM2.6 in North Atlantic
- Input: surface velocities and temperature (masked coast)
- Target: hand selected locations of coastal sea level

ons

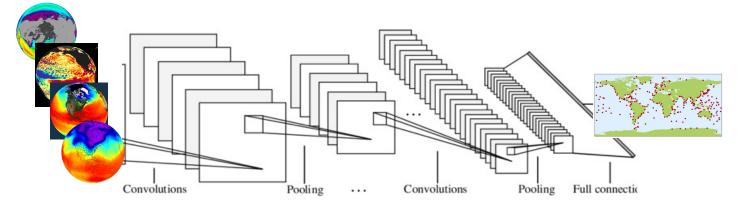
- Generic convolutional neural network
- Each input-target is a single time step



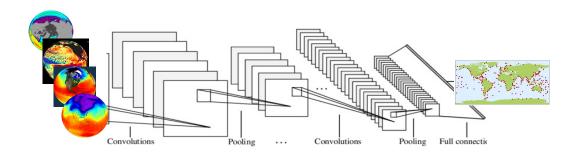


Summary

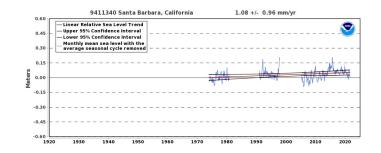
- Relate costal sea level to its drivers in the ocean interior
- Use machine learning to link between satellite measurements (input) and tide gauge data (target)
- A transfer learning method trained on modeled and observed sea surface data to predict coastal sea level at tide gauge locations
- Gain new insights on this multiscale problem where traditional simulations fail



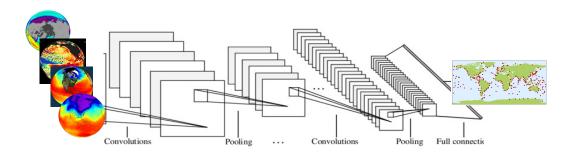
Smaller questions



- Network architecture?
- Input format? gridded vs along track, model resolution?
- Output format? Moments?
- How to match consistently input and target data?
- How to treat gaps in (observational) data?
- Is geographical bias an issue?
- Account for lag between interior and coast? Include more input channels (e.g. more time steps)?

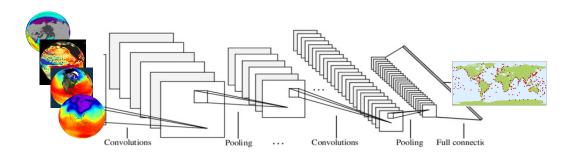


Medium questions



- How does this method hold for different regions? Seasonality?
- Are some properties more important than others? (e.g. sst, sss, ssh, Pa). Remove some data from training and evaluate
- Explore future coastal predictions given modeled surface conditions?

Bigger questions



- What else can we learn from the learning process?
- Causality vs correlation?
- Generalizable to other climate problems?

Smaller questions	Medium questions	Bigger questions
Network architecture? Input format? gridded vs along track, model resolution?	How does this method hold for different regions? Seasonality? Are some properties more	What else can we learn from the learning process? Causality vs correlation?
Output format? Moments? How to match consistently input and target data?	important than others? (e.g. sst, sss, ssh, Pa). Remove some data from training and evaluate Explore future coastal predictions given modeled	Generalizable to other climate problems?
How to treat gaps in (observational) data? Is geographical bias an issue?	surface conditions?	
Account for lag between interior and coast? Include more input channels (e.g. more time steps)?		